前端性能优化原理与实践
2020-08-10 10:56:38 4 举报
AI智能生成
前端性能优化
作者其他创作
大纲/内容
从输入 URL 到页面加载完成,发生了什么?
1、DNS 解析
2、TCP 连接
3、HTTP 请求抛出
4、服务端处理请求,HTTP 响应返回
5、浏览器拿到响应数据,解析响应内容,把解析的结果展示给用户
2、TCP 连接
3、HTTP 请求抛出
4、服务端处理请求,HTTP 响应返回
5、浏览器拿到响应数据,解析响应内容,把解析的结果展示给用户
导图
网络
从输入 URL 到显示页面这个过程中,涉及到网络层面的,有三个主要过程:
DNS 解析
TCP 连接
HTTP 请求/响应
TCP 连接
HTTP 请求/响应
网络层面中前端优化核心
对于 DNS 解析和 TCP 连接两个步骤,我们前端可以做的努力非常有限。
相比之下,HTTP 连接这一层面的优化才是我们网络优化的核心
相比之下,HTTP 连接这一层面的优化才是我们网络优化的核心
HTTP 优化有两个大的方向:
减少请求次数
减少单次请求所花费的时间
减少单次请求所花费的时间
这两个优化点直直地指向了我们日常开发中非常常见的操作——资源的压缩与合并。没错,这就是我们每天用构建工具在做的事情。而时下最主流的构建工具无疑是 webpack,所以我们这节的主要任务就是围绕业界霸主 webpack 来做文章。
webpack 优化方案
webpack 的优化瓶颈,主要是两个方面:
webpack 的构建过程太花时间
webpack 打包的结果体积太大
webpack 打包的结果体积太大
构建过程提速策略
不要让 loader 做太多事情——以 babel-loader 为例
用 include 或 exclude 来帮我们避免不必要的转译
开启缓存将转译结果缓存至文件系统,则至少可以将 babel-loader 的工作效率提升两倍
loader: 'babel-loader?cacheDirectory=true'
loader: 'babel-loader?cacheDirectory=true'
不要放过第三方库
第三方库以 node_modules 为代表,它们庞大得可怕,却又不可或缺
处理第三方库的姿势有很多,其中,Externals 不够聪明,一些情况下会引发重复打包的问题;
而 CommonsChunkPlugin 每次构建时都会重新构建一次 vendor;
出于对效率的考虑,我们这里为大家推荐 DllPlugin。
处理第三方库的姿势有很多,其中,Externals 不够聪明,一些情况下会引发重复打包的问题;
而 CommonsChunkPlugin 每次构建时都会重新构建一次 vendor;
出于对效率的考虑,我们这里为大家推荐 DllPlugin。
DllPlugin 是基于 Windows 动态链接库(dll)的思想被创作出来的。这个插件会把第三方库单独打包到一个文件中,这个文件就是一个单纯的依赖库。这个依赖库不会跟着你的业务代码一起被重新打包,只有当依赖自身发生版本变化时才会重新打包。
用 DllPlugin 处理文件,要分两步走:
基于 dll 专属的配置文件,打包 dll 库
基于 webpack.config.js 文件,打包业务代码
基于 webpack.config.js 文件,打包业务代码
Happypack——将 loader 由单进程转为多进程
webpack 是单线程的,就算此刻存在多个任务,你也只能排队一个接一个地等待处理。这是 webpack 的缺点,好在我们的 CPU 是多核的,Happypack 会充分释放 CPU 在多核并发方面的优势,帮我们把任务分解给多个子进程去并发执行,大大提升打包效率。
构建结果体积压缩
文件结构可视化,找出导致体积过大的原因
webpack-bundle-analyzer
webpack-bundle-analyzer
const BundleAnalyzerPlugin = require('webpack-bundle-analyzer').BundleAnalyzerPlugin;
module.exports = {
plugins: [
new BundleAnalyzerPlugin()
]
}
module.exports = {
plugins: [
new BundleAnalyzerPlugin()
]
}
拆分资源
围绕 DllPlugin 展开,可参考上文
删除冗余代码
Tree-Shaking
从 webpack2 开始,webpack 原生支持了 ES6 的模块系统,并基于此推出了 Tree-Shaking
意思是基于 import/export 语法,Tree-Shaking 可以在编译的过程中获悉哪些模块并没有真正被使用,这些没用的代码,在最后打包的时候会被去除。
Tree-Shaking 的针对性很强,它更适合用来处理模块级别的冗余代码。至于粒度更细的冗余代码的去除,往往会被整合进 JS 或 CSS 的压缩或分离过程中
uglifyjs-webpack-plugin
webpack4 现在已经默认使用 uglifyjs-webpack-plugin 对代码做压缩了
在 webpack4 中,我们是通过配置 optimization.minimize 与 optimization.minimizer 来自定义压缩相关的操作的
在 webpack4 中,我们是通过配置 optimization.minimize 与 optimization.minimizer 来自定义压缩相关的操作的
按需加载
一次不加载完所有的文件内容,只加载此刻需要用到的那部分(会提前做拆分)
当需要更多内容时,再对用到的内容进行即时加载
当需要更多内容时,再对用到的内容进行即时加载
Gzip压缩
开启Gzip
在 request headers 中加上:
accept-encoding:gzip
accept-encoding:gzip
HTTP压缩
HTTP 压缩就是以缩小体积为目的,对 HTTP 内容进行重新编码的过程
Gzip 就是 HTTP 压缩的经典例题。
Gzip 是高效的,压缩后通常能帮我们减少响应 70% 左右的大小。
但它并非万能。Gzip 并不保证针对每一个文件的压缩都会使其变小
但它并非万能。Gzip 并不保证针对每一个文件的压缩都会使其变小
Gzip 压缩原理
是在一个文本文件中找出一些重复出现的字符串、临时替换它们,从而使整个文件变小。根据这个原理,文件中代码的重复率越高,那么压缩的效率就越高,使用 Gzip 的收益也就越大。反之亦然。
webpack 的 Gzip 和服务端的 Gzip
务器的 CPU 性能不是无限的,如果存在大量的压缩需求,服务器也扛不住的。服务器一旦因此慢下来了,用户还是要等。Webpack 中 Gzip 压缩操作的存在,事实上就是为了在构建过程中去做一部分服务器的工作,为服务器分压。
图片优化-质量与性能
不同业务场景下的图片方案选型
JPEG/JPG
有损压缩、体积小、加载快、不支持透明
JPG 的优点
JPG 最大的特点是有损压缩
这种高效的压缩算法使它成为了一种非常轻巧的图片格式。
另一方面,即使被称为“有损”压缩,JPG的压缩方式仍然是一种高质量的压缩方式:
这种高效的压缩算法使它成为了一种非常轻巧的图片格式。
另一方面,即使被称为“有损”压缩,JPG的压缩方式仍然是一种高质量的压缩方式:
使用场景
JPG 适用于呈现色彩丰富的图片,在我们日常开发中,JPG 图片经常作为大的背景图、轮播图或 Banner 图出现。
JPG 的缺陷
有损压缩在上文所展示的轮播图上确实很难露出马脚,但当它处理矢量图形和 Logo 等线条感较强、颜色对比强烈的图像时,人为压缩导致的图片模糊会相当明显。
此外,JPEG 图像不支持透明度处理,透明图片需要召唤 PNG 来呈现。
此外,JPEG 图像不支持透明度处理,透明图片需要召唤 PNG 来呈现。
PNG-8 与 PNG-24
无损压缩、质量高、体积大、支持透明
PNG 的优点
PNG(可移植网络图形格式)是一种无损压缩的高保真的图片格式
PNG 图片具有比 JPG 更强的色彩表现力,对线条的处理更加细腻,对透明度有良好的支持。它弥补了上文我们提到的 JPG 的局限性,唯一的 BUG 就是体积太大。
PNG-8 与 PNG-24 的选择题
如何确定一张图片是该用 PNG-8 还是 PNG-24 去呈现呢?好的做法是把图片先按照这两种格式分别输出,看 PNG-8 输出的结果是否会带来肉眼可见的质量损耗,并且确认这种损耗是否在我们(尤其是你的 UI 设计师)可接受的范围内,基于对比的结果去做判断。
应用场景
考虑到 PNG 在处理线条和颜色对比度方面的优势,我们主要用它来呈现小的 Logo、颜色简单且对比强烈的图片或背景等
SVG
文本文件、体积小、不失真、兼容性好
SVG(可缩放矢量图形)是一种基于 XML 语法的图像格式。它和本文提及的其它图片种类有着本质的不同:SVG 对图像的处理不是基于像素点,而是是基于对图像的形状描述。
SVG 的特性
SVG 与 PNG 和 JPG 相比,文件体积更小,可压缩性更强
作为矢量图,它最显著的优势还是在于图片可无限放大而不失真
SVG 是文本文件。我们既可以像写代码一样定义 SVG,把它写在 HTML 里、成为 DOM 的一部分,也可以把对图形的描述写入以 .svg 为后缀的独立文件(SVG 文件在使用上与普通图片文件无异)。这使得 SVG 文件可以被非常多的工具读取和修改,具有较强的灵活性
SVG 的局限性
一方面是它的渲染成本比较高,这点对性能来说是很不利的。
另一方面,SVG 存在着其它图片格式所没有的学习成本(它是可编程的)
另一方面,SVG 存在着其它图片格式所没有的学习成本(它是可编程的)
SVG 的使用方式与应用场景
将 SVG 写入 HTML
<svg xmlns="http://www.w3.org/2000/svg" width="200" height="200">
<circle cx="50" cy="50" r="50" />
</svg>
<circle cx="50" cy="50" r="50" />
</svg>
将 SVG 写入独立文件后引入 HTML
<img src="文件名.svg" alt="">
Base64
文本文件、依赖编码、小图标解决方案
和雪碧图一样,Base64 图片的出现,也是为了减少加载网页图片时对服务器的请求次数,从而提升网页性能。Base64 是作为雪碧图的补充而存在的。
Base64 是一种用于传输 8Bit 字节码的编码方式,通过对图片进行 Base64 编码,我们可以直接将编码结果写入 HTML 或者写入 CSS,从而减少 HTTP 请求的次数。
Base64 的应用场景
非常小的 Logo
Base64 编码后,图片大小会膨胀为原文件的 4/3(这是由 Base64 的编码原理决定的)。如果我们把大图也编码到 HTML 或 CSS 文件中,后者的体积会明显增加,即便我们减少了 HTTP 请求,也无法弥补这庞大的体积带来的性能开销,得不偿失
在传输非常小的图片的时候,Base64 带来的文件体积膨胀、以及浏览器解析 Base64 的时间开销,与它节省掉的 HTTP 请求开销相比,可以忽略不计,这时候才能真正体现出它在性能方面的优势
在传输非常小的图片的时候,Base64 带来的文件体积膨胀、以及浏览器解析 Base64 的时间开销,与它节省掉的 HTTP 请求开销相比,可以忽略不计,这时候才能真正体现出它在性能方面的优势
往在一张图片满足以下条件时会对它应用 Base64 编码
图片的实际尺寸很小(大家可以观察一下掘金页面的 Base64 图,几乎没有超过 2kb 的)
图片无法以雪碧图的形式与其它小图结合(合成雪碧图仍是主要的减少 HTTP 请求的途径,Base64 是雪碧图的补充)
图片的更新频率非常低(不需我们重复编码和修改文件内容,维护成本较低)
图片无法以雪碧图的形式与其它小图结合(合成雪碧图仍是主要的减少 HTTP 请求的途径,Base64 是雪碧图的补充)
图片的更新频率非常低(不需我们重复编码和修改文件内容,维护成本较低)
Base64 编码工具推荐
这里最推荐的是利用 webpack 来进行 Base64 的编码——webpack 的 url-loader 非常聪明,它除了具备基本的 Base64 转码能力,还可以结合文件大小,帮我们判断图片是否有必要进行 Base64 编码
WebP
一种旨在加快图片加载速度的图片格式,它支持有损压缩和无损压缩
WebP 的优点
WebP 像 JPEG 一样对细节丰富的图片信手拈来,像 PNG 一样支持透明,像 GIF 一样可以显示动态图片——它集多种图片文件格式的优点于一身
WebP 的局限性
太年轻。我们知道,任何新生事物,都逃不开兼容性的大坑
ebP 还会增加服务器的负担——和编码 JPG 文件相比,编码同样质量的 WebP 文件会占用更多的计算资源。
存储
浏览器缓存机制介绍与缓存策略剖析
事实上,浏览器缓存机制有四个方面,它们按照获取资源时请求的优先级依次排列如下
Memory Cache
Service Worker Cache
HTTP Cache
Push Cache
Service Worker Cache
HTTP Cache
Push Cache
HTTP 缓存机制探秘
先级较高的是强缓存,在命中强缓存失败的情况下,才会走协商缓存。
强缓存
public 与 private
如果我们为资源设置了 public,那么它既可以被浏览器缓存,也可以被代理服务器缓存;
如果我们设置了 private,则该资源只能被浏览器缓存。private 为默认值
如果我们设置了 private,则该资源只能被浏览器缓存。private 为默认值
no-store与no-cache
no-cache 绕开了浏览器:我们为资源设置了 no-cache 后,每一次发起请求都不会再去询问浏览器的缓存情况,而是直接向服务端去确认该资源是否过期(即走我们下文即将讲解的协商缓存的路线)。
no-store 比较绝情,顾名思义就是不使用任何缓存策略。在 no-cache 的基础上,它连服务端的缓存确认也绕开了,只允许你直接向服务端发送请求、并下载完整的响应。
no-store 比较绝情,顾名思义就是不使用任何缓存策略。在 no-cache 的基础上,它连服务端的缓存确认也绕开了,只允许你直接向服务端发送请求、并下载完整的响应。
协商缓存:
浏览器与服务器合作之下的缓存策略
浏览器与服务器合作之下的缓存策略
Last-Modified
Etag
Etag 在感知文件变化上比 Last-Modified 更加准确,优先级也更高。当 Etag 和 Last-Modified 同时存在时,以 Etag 为准。
HTTP 缓存决策指南
MemoryCache
MemoryCache,是指存在内存中的缓存。从优先级上来说,它是浏览器最先尝试去命中的一种缓存。从效率上来说,它是响应速度最快的一种缓存。
内存缓存是快的,也是“短命”的。它和渲染进程“生死相依”,当进程结束后,也就是 tab 关闭以后,内存里的数据也将不复存在。
内存缓存是快的,也是“短命”的。它和渲染进程“生死相依”,当进程结束后,也就是 tab 关闭以后,内存里的数据也将不复存在。
那么哪些文件会被放入内存呢?
资源存不存内存,浏览器秉承的是“节约原则”。我们发现,Base64 格式的图片,几乎永远可以被塞进 memory cache,这可以视作浏览器为节省渲染开销的“自保行为”;此外,体积不大的 JS、CSS 文件,也有较大地被写入内存的几率——相比之下,较大的 JS、CSS 文件就没有这个待遇了,内存资源是有限的,它们往往被直接甩进磁盘。
Service Worker Cache
Service Worker 是一种独立于主线程之外的 Javascript 线程。它脱离于浏览器窗体,因此无法直接访问 DOM。这样独立的个性使得 Service Worker 的“个人行为”无法干扰页面的性能,这个“幕后工作者”可以帮我们实现离线缓存、消息推送和网络代理等功能。我们借助 Service worker 实现的离线缓存就称为 Service Worker Cache。
Service Worker 的生命周期包括 install、active、working 三个阶段。一旦 Service Worker 被 install,它将始终存在,只会在 active 与 working 之间切换,除非我们主动终止它。这是它可以用来实现离线存储的重要先决条件。
Push Cache
本次存储--从Cookie到Web Storage、IndexedDB
故事的开始:从 Cookie 说起
Cookie 的本职工作并非本地存储,而是“维持状态”。
在 Web 开发的早期,人们亟需解决的一个问题就是状态管理的问题:HTTP 协议是一个无状态协议,服务器接收客户端的请求,返回一个响应,故事到此就结束了,服务器并没有记录下关于客户端的任何信息。那么下次请求的时候,如何让服务器知道“我是我”呢?
在这样的背景下,Cookie 应运而生。
Cookie 说白了就是一个存储在浏览器里的一个小小的文本文件,它附着在 HTTP 请求上,在浏览器和服务器之间“飞来飞去”。它可以携带用户信息,当服务器检查 Cookie 的时候,便可以获取到客户端的状态。
在 Web 开发的早期,人们亟需解决的一个问题就是状态管理的问题:HTTP 协议是一个无状态协议,服务器接收客户端的请求,返回一个响应,故事到此就结束了,服务器并没有记录下关于客户端的任何信息。那么下次请求的时候,如何让服务器知道“我是我”呢?
在这样的背景下,Cookie 应运而生。
Cookie 说白了就是一个存储在浏览器里的一个小小的文本文件,它附着在 HTTP 请求上,在浏览器和服务器之间“飞来飞去”。它可以携带用户信息,当服务器检查 Cookie 的时候,便可以获取到客户端的状态。
Cookie的性能劣势
Cookie 不够大
过量的 Cookie 会带来巨大的性能浪费
Cookie 是紧跟域名的。
同一个域名下的所有请求,都会携带 Cookie。
向前一步:Web Storage
Web Storage 是 HTML5 专门为浏览器存储而提供的数据存储机制。它又分为 Local Storage 与 Session Storage。这两组概念非常相近,我们不妨先理解它们之间的区别,再对它们的共性进行研究。
Local Storage 与 Session Storage 的区别
两者的区别在于生命周期与作用域的不同。
生命周期:Local Storage 是持久化的本地存储,存储在其中的数据是永远不会过期的,使其消失的唯一办法是手动删除;而 Session Storage 是临时性的本地存储,它是会话级别的存储,当会话结束(页面被关闭)时,存储内容也随之被释放。
作用域:Local Storage、Session Storage 和 Cookie 都遵循同源策略。但 Session Storage 特别的一点在于,即便是相同域名下的两个页面,只要它们不在同一个浏览器窗口中打开,那么它们的 Session Storage 内容便无法共享。
Web Storage 的特性
作用域:Local Storage、Session Storage 和 Cookie 都遵循同源策略。但 Session Storage 特别的一点在于,即便是相同域名下的两个页面,只要它们不在同一个浏览器窗口中打开,那么它们的 Session Storage 内容便无法共享。
Web Storage 的特性
Web Storage 的特性
存储容量大: Web Storage 根据浏览器的不同,存储容量可以达到 5-10M 之间。
仅位于浏览器端,不与服务端发生通信。
仅位于浏览器端,不与服务端发生通信。
应用场景
Local Storage
Local Storage 在存储方面没有什么特别的限制,理论上 Cookie 无法胜任的、可以用简单的键值对来存取的数据存储任务,都可以交给 Local Storage 来做。
考虑到 Local Storage 的特点之一是持久,有时我们更倾向于用它来存储一些内容稳定的资源。比如图片内容丰富的电商网站会用它来存储 Base64 格式的图片字符串:
有的网站还会用它存储一些不经常更新的 CSS、JS 等静态资源。
考虑到 Local Storage 的特点之一是持久,有时我们更倾向于用它来存储一些内容稳定的资源。比如图片内容丰富的电商网站会用它来存储 Base64 格式的图片字符串:
有的网站还会用它存储一些不经常更新的 CSS、JS 等静态资源。
Session Storage
Session Storage 更适合用来存储生命周期和它同步的会话级别的信息。这些信息只适用于当前会话,当你开启新的会话时,它也需要相应的更新或释放。比如微博的 Session Storage 就主要是存储你本次会话的浏览足迹:
lasturl 对应的就是你上一次访问的 URL 地址,这个地址是即时的。当你切换 URL 时,它随之更新,当你关闭页面时,留着它也确实没有什么意义了,干脆释放吧。这样的数据用 Session Storage 来处理再合适不过。
lasturl 对应的就是你上一次访问的 URL 地址,这个地址是即时的。当你切换 URL 时,它随之更新,当你关闭页面时,留着它也确实没有什么意义了,干脆释放吧。这样的数据用 Session Storage 来处理再合适不过。
Web Storage 是对 Cookie 的拓展,它只能用于存储少量的简单数据。当遇到大规模的、结构复杂的数据时,Web Storage 也爱莫能助了。这时候我们就要清楚我们的终极大 boss——IndexedDB!
终极形态:IndexedDB
IndexedDB 是一个运行在浏览器上的非关系型数据库。既然是数据库了,那就不是 5M、10M 这样小打小闹级别了。理论上来说,IndexedDB 是没有存储上限的(一般来说不会小于 250M)。它不仅可以存储字符串,还可以存储二进制数据。
IndexedDB 的应用场景
通过上面的示例大家可以看出,在 IndexedDB 中,我们可以创建多个数据库,一个数据库中创建多张表,一张表中存储多条数据——这足以 hold 住复杂的结构性数据。IndexedDB 可以看做是 LocalStorage 的一个升级,当数据的复杂度和规模上升到了 LocalStorage 无法解决的程度,我们毫无疑问可以请出 IndexedDB 来帮忙。
CDN
CDN的缓存与回源机制解析
CDN是什么?
CDN (Content Delivery Network,即内容分发网络)指的是一组分布在各个地区的服务器。这些服务器存储着数据的副本,因此服务器可以根据哪些服务器与用户距离最近,来满足数据的请求。 CDN 提供快速服务,较少受高流量影响。
为什么要用 CDN
缓存、本地存储带来的性能提升,是不是只能在“获取到资源并把它们存起来”这件事情发生之后?也就是说,首次请求资源的时候,这些招数都是救不了我们的。要提升首次请求的响应能力,除了我们 2、3、4 节提到的方案之外,我们还需要借助 CDN 的能力。
CDN的核心功能特写
CDN 的核心点有两个,一个是缓存,一个是回源。
这两个概念都非常好理解。对标到上面描述的过程,“缓存”就是说我们把资源 copy 一份到 CDN 服务器上这个过程,“回源”就是说 CDN 发现自己没有这个资源(一般是缓存的数据过期了),转头向根服务器(或者它的上层服务器)去要这个资源的过程。
这两个概念都非常好理解。对标到上面描述的过程,“缓存”就是说我们把资源 copy 一份到 CDN 服务器上这个过程,“回源”就是说 CDN 发现自己没有这个资源(一般是缓存的数据过期了),转头向根服务器(或者它的上层服务器)去要这个资源的过程。
CDN 与前端性能优化
CDN 往往被用来存放静态资源。上文中我们举例所提到的“根服务器”本质上是业务服务器,它的核心任务在于生成动态页面或返回非纯静态页面,这两种过程都是需要计算的。业务服务器仿佛一个车间,车间里运转的机器轰鸣着为我们产出所需的资源;相比之下,CDN 服务器则像一个仓库,它只充当资源的“栖息地”和“搬运工”。
所谓“静态资源”,就是像 JS、CSS、图片等不需要业务服务器进行计算即得的资源。而“动态资源”,顾名思义是需要后端实时动态生成的资源,较为常见的就是 JSP、ASP 或者依赖服务端渲染得到的 HTML 页面。
什么是“非纯静态资源”呢?它是指需要服务器在页面之外作额外计算的 HTML 页面。具体来说,当我打开某一网站之前,该网站需要通过权限认证等一系列手段确认我的身份、进而决定是否要把 HTML 页面呈现给我。这种情况下 HTML 确实是静态的,但它和业务服务器的操作耦合,我们把它丢到CDN 上显然是不合适的。
所谓“静态资源”,就是像 JS、CSS、图片等不需要业务服务器进行计算即得的资源。而“动态资源”,顾名思义是需要后端实时动态生成的资源,较为常见的就是 JSP、ASP 或者依赖服务端渲染得到的 HTML 页面。
什么是“非纯静态资源”呢?它是指需要服务器在页面之外作额外计算的 HTML 页面。具体来说,当我打开某一网站之前,该网站需要通过权限认证等一系列手段确认我的身份、进而决定是否要把 HTML 页面呈现给我。这种情况下 HTML 确实是静态的,但它和业务服务器的操作耦合,我们把它丢到CDN 上显然是不合适的。
CDN 的实际应用
静态资源本身具有访问频率高、承接流量大的特点,因此静态资源加载速度始终是前端性能的一个非常关键的指标。CDN 是静态资源提速的重要手段,在许多一线的互联网公司,“静态资源走 CDN”并不是一个建议,而是一个规定。
CDN 优化细节
同一个域名下的请求会不分青红皂白地携带 Cookie,而静态资源往往并不需要 Cookie 携带什么认证信息。把静态资源和主页面置于不同的域名下,完美地避免了不必要的 Cookie 的出现!
看起来是一个不起眼的小细节,但带来的效用却是惊人的。以电商网站静态资源的流量之庞大,如果没把这个多余的 Cookie 拿下来,不仅用户体验会大打折扣,每年因性能浪费带来的经济开销也将是一个非常恐怖的数字。
看起来是一个不起眼的小细节,但带来的效用却是惊人的。以电商网站静态资源的流量之庞大,如果没把这个多余的 Cookie 拿下来,不仅用户体验会大打折扣,每年因性能浪费带来的经济开销也将是一个非常恐怖的数字。
渲染
服务端渲染(SSR)的探索与实践
是什么?
——服务端渲染的运行机制
——服务端渲染的运行机制
服务端渲染的模式下,当用户第一次请求页面时,由服务器把需要的组件或页面渲染成 HTML 字符串,然后把它返回给客户端。客户端拿到手的,是可以直接渲染然后呈现给用户的 HTML 内容,不需要为了生成 DOM 内容自己再去跑一遍 JS 代码。
使用服务端渲染的网站,可以说是“所见即所得”,页面上呈现的内容,我们在 html 源文件里也能找到。
使用服务端渲染的网站,可以说是“所见即所得”,页面上呈现的内容,我们在 html 源文件里也能找到。
为什么?
——服务端渲染解决了什么性能问题
——服务端渲染解决了什么性能问题
事实上,很多网站是出于效益的考虑才启用服务端渲染,性能倒是在其次。
假设 A 网站页面中有一个关键字叫“前端性能优化”,这个关键字是 JS 代码跑过一遍后添加到 HTML 页面中的。那么客户端渲染模式下,我们在搜索引擎搜索这个关键字,是找不到 A 网站的——搜索引擎只会查找现成的内容,不会帮你跑 JS 代码。A 网站的运营方见此情形,感到很头大:搜索引擎搜不出来,用户找不到我们,谁还会用我的网站呢?为了把“现成的内容”拿给搜索引擎看,A 网站不得不启用服务端渲染。
但性能在其次,不代表性能不重要。服务端渲染解决了一个非常关键的性能问题——首屏加载速度过慢。在客户端渲染模式下,我们除了加载 HTML,还要等渲染所需的这部分 JS 加载完,之后还得把这部分 JS 在浏览器上再跑一遍。这一切都是发生在用户点击了我们的链接之后的事情,在这个过程结束之前,用户始终见不到我们网页的庐山真面目,也就是说用户一直在等!相比之下,服务端渲染模式下,服务器给到客户端的已经是一个直接可以拿来呈现给用户的网页,中间环节早在服务端就帮我们做掉了,用户岂不“美滋滋”?
假设 A 网站页面中有一个关键字叫“前端性能优化”,这个关键字是 JS 代码跑过一遍后添加到 HTML 页面中的。那么客户端渲染模式下,我们在搜索引擎搜索这个关键字,是找不到 A 网站的——搜索引擎只会查找现成的内容,不会帮你跑 JS 代码。A 网站的运营方见此情形,感到很头大:搜索引擎搜不出来,用户找不到我们,谁还会用我的网站呢?为了把“现成的内容”拿给搜索引擎看,A 网站不得不启用服务端渲染。
但性能在其次,不代表性能不重要。服务端渲染解决了一个非常关键的性能问题——首屏加载速度过慢。在客户端渲染模式下,我们除了加载 HTML,还要等渲染所需的这部分 JS 加载完,之后还得把这部分 JS 在浏览器上再跑一遍。这一切都是发生在用户点击了我们的链接之后的事情,在这个过程结束之前,用户始终见不到我们网页的庐山真面目,也就是说用户一直在等!相比之下,服务端渲染模式下,服务器给到客户端的已经是一个直接可以拿来呈现给用户的网页,中间环节早在服务端就帮我们做掉了,用户岂不“美滋滋”?
怎么做?
——服务端渲染的应用实例与使用场景
——服务端渲染的应用实例与使用场景
React实现SSR
使用 Express 搭建后端服务
项目中有一个叫做 VDom 的 React 组件
在服务端的入口文件中,我引入这个组件,对它进行渲染
核心代码:
// 创建一个express应用
const app = express()
// renderToString 是把虚拟DOM转化为真实DOM的关键方法
const RDom = renderToString(<VDom />)
// 配置HTML内容对应的路由
app.get('/index', function(req, res) {
res.send(Page)
})
// 配置端口号
const server = app.listen(8000)
// 创建一个express应用
const app = express()
// renderToString 是把虚拟DOM转化为真实DOM的关键方法
const RDom = renderToString(<VDom />)
// 配置HTML内容对应的路由
app.get('/index', function(req, res) {
res.send(Page)
})
// 配置端口号
const server = app.listen(8000)
根据我们的路由配置,当我访问 http://localhost:8000/index 时,
就可以呈现出服务端渲染的结果了:
我们可以看到,VDom 组件已经被 renderToString 转化为了一个内容为
<div data-reactroot="">我是一个被渲染为真实DOM的虚拟DOM</div>的字符串,
这个字符串被插入 HTML 代码,成为了真实 DOM 树的一部分。
就可以呈现出服务端渲染的结果了:
我们可以看到,VDom 组件已经被 renderToString 转化为了一个内容为
<div data-reactroot="">我是一个被渲染为真实DOM的虚拟DOM</div>的字符串,
这个字符串被插入 HTML 代码,成为了真实 DOM 树的一部分。
vue如何实现SSR
解锁浏览器背后的运行机制
开启浏览器渲染“黑盒”
什么是渲染过程?
简单来说,渲染引擎根据 HTML 文件描述构建相应的数学模型,调用浏览器各个零部件,从而将网页资源代码转换为图像结果,这个过程就是渲染过程(如图)。
从这个流程来看,浏览器呈现网页这个过程,宛如一个黑盒。在这个神秘的黑盒中,有许多功能模块,内核内部的实现正是这些功能模块相互配合协同工作进行的。其中我们最需要关注的,就是HTML 解释器、CSS 解释器、图层布局计算模块、视图绘制模块与JavaScript 引擎这几大模块:
HTML 解释器:将 HTML 文档经过词法分析输出 DOM 树。
CSS 解释器:解析 CSS 文档, 生成样式规则。
图层布局计算模块:布局计算每个对象的精确位置和大小。
视图绘制模块:进行具体节点的图像绘制,将像素渲染到屏幕上。
JavaScript 引擎:编译执行 Javascript 代码。
CSS 解释器:解析 CSS 文档, 生成样式规则。
图层布局计算模块:布局计算每个对象的精确位置和大小。
视图绘制模块:进行具体节点的图像绘制,将像素渲染到屏幕上。
JavaScript 引擎:编译执行 Javascript 代码。
浏览器渲染过程解析
在浏览器里,每一个页面的首次渲染都经历了如下阶段(图中箭头不代表串行,有一些操作是并行进行的,下文会说明):
解析 HTML
在这一步浏览器执行了所有的加载解析逻辑,在解析 HTML 的过程中发出了页面渲染所需的各种外部资源请求。
计算样式
浏览器将识别并加载所有的 CSS 样式信息与 DOM 树合并,最终生成页面 render 树(:after :before 这样的伪元素会在这个环节被构建到 DOM 树中)。
计算图层布局
页面中所有元素的相对位置信息,大小等信息均在这一步得到计算。
绘制图层
在这一步中浏览器会根据我们的 DOM 代码结果,把每一个页面图层转换为像素,并对所有的媒体文件进行解码。
整合图层,得到页面
最后一步浏览器会合并合各个图层,将数据由 CPU 输出给 GPU 最终绘制在屏幕上。(复杂的视图层会给这个阶段的 GPU 计算带来一些压力,在实际应用中为了优化动画性能,我们有时会手动区分不同的图层)。
在这一步浏览器执行了所有的加载解析逻辑,在解析 HTML 的过程中发出了页面渲染所需的各种外部资源请求。
计算样式
浏览器将识别并加载所有的 CSS 样式信息与 DOM 树合并,最终生成页面 render 树(:after :before 这样的伪元素会在这个环节被构建到 DOM 树中)。
计算图层布局
页面中所有元素的相对位置信息,大小等信息均在这一步得到计算。
绘制图层
在这一步中浏览器会根据我们的 DOM 代码结果,把每一个页面图层转换为像素,并对所有的媒体文件进行解码。
整合图层,得到页面
最后一步浏览器会合并合各个图层,将数据由 CPU 输出给 GPU 最终绘制在屏幕上。(复杂的视图层会给这个阶段的 GPU 计算带来一些压力,在实际应用中为了优化动画性能,我们有时会手动区分不同的图层)。
几棵重要的“树”
渲染过程
DOM 树:解析 HTML 以创建的是 DOM 树(DOM tree ):渲染引擎开始解析 HTML 文档,转换树中的标签到 DOM 节点,它被称为“内容树”。
CSSOM 树:解析 CSS(包括外部 CSS 文件和样式元素)创建的是 CSSOM 树。CSSOM 的解析过程与 DOM 的解析过程是并行的。
渲染树:CSSOM 与 DOM 结合,之后我们得到的就是渲染树(Render tree )。
布局渲染树:从根节点递归调用,计算每一个元素的大小、位置等,给每个节点所应该出现在屏幕上的精确坐标,我们便得到了基于渲染树的布局渲染树(Layout of the render tree)。
绘制渲染树: 遍历渲染树,每个节点将使用 UI 后端层来绘制。整个过程叫做绘制渲染树(Painting the render tree)。
CSSOM 树:解析 CSS(包括外部 CSS 文件和样式元素)创建的是 CSSOM 树。CSSOM 的解析过程与 DOM 的解析过程是并行的。
渲染树:CSSOM 与 DOM 结合,之后我们得到的就是渲染树(Render tree )。
布局渲染树:从根节点递归调用,计算每一个元素的大小、位置等,给每个节点所应该出现在屏幕上的精确坐标,我们便得到了基于渲染树的布局渲染树(Layout of the render tree)。
绘制渲染树: 遍历渲染树,每个节点将使用 UI 后端层来绘制。整个过程叫做绘制渲染树(Painting the render tree)。
不做无用功:基于渲染流程的 CSS 优化建议
CSS 选择符是从右到左进行匹配的。
1、避免使用通配符*,只对需要用到的元素进行选择。
2、关注可以通过继承实现的属性,避免重复匹配重复定义。
3、少用标签选择器。如果可以,用类选择器替代,
错误:#myList li{}
正确:.myList_li {}
4、不要画蛇添足,id 和 class 选择器不应该被多余的标签选择器拖后腿。
错误:.myList#title
正确:#title
5、减少嵌套。后代选择器的开销是最高的,因此我们应该尽量将选择器的深度降到最低(最高不要超过三层),尽可能使用类来关联每一个标签元素。
2、关注可以通过继承实现的属性,避免重复匹配重复定义。
3、少用标签选择器。如果可以,用类选择器替代,
错误:#myList li{}
正确:.myList_li {}
4、不要画蛇添足,id 和 class 选择器不应该被多余的标签选择器拖后腿。
错误:.myList#title
正确:#title
5、减少嵌套。后代选择器的开销是最高的,因此我们应该尽量将选择器的深度降到最低(最高不要超过三层),尽可能使用类来关联每一个标签元素。
告别阻塞:CSS 与 JS 的加载顺序优化
HTML、CSS 和 JS,都具有阻塞渲染的特性。
HTML 阻塞,天经地义——没有 HTML,何来 DOM?没有 DOM,渲染和优化,都是空谈。
HTML 阻塞,天经地义——没有 HTML,何来 DOM?没有 DOM,渲染和优化,都是空谈。
CSS 的阻塞
在刚刚的过程中,我们提到 DOM 和 CSSOM 合力才能构建渲染树。这一点会给性能造成严重影响:默认情况下,CSS 是阻塞的资源。浏览器在构建 CSSOM 的过程中,不会渲染任何已处理的内容。即便 DOM 已经解析完毕了,只要 CSSOM 不 OK,那么渲染这个事情就不 OK(这主要是为了避免没有 CSS 的 HTML 页面丑陋地“裸奔”在用户眼前)。
我们知道,只有当我们开始解析 HTML 后、解析到 link 标签或者 style 标签时,CSS 才登场,CSSOM 的构建才开始。很多时候,DOM 不得不等待 CSSOM。因此我们可以这样总结:
CSS 是阻塞渲染的资源。需要将它尽早、尽快地下载到客户端,以便缩短首次渲染的时间。
事实上,现在很多团队都已经做到了尽早(将 CSS 放在 head 标签里)和尽快(启用 CDN 实现静态资源加载速度的优化)。这个“把 CSS 往前放”的动作,对很多同学来说已经内化为一种编码习惯。那么现在我们还应该知道,这个“习惯”不是空穴来风,它是由 CSS 的特性决定的。
我们知道,只有当我们开始解析 HTML 后、解析到 link 标签或者 style 标签时,CSS 才登场,CSSOM 的构建才开始。很多时候,DOM 不得不等待 CSSOM。因此我们可以这样总结:
CSS 是阻塞渲染的资源。需要将它尽早、尽快地下载到客户端,以便缩短首次渲染的时间。
事实上,现在很多团队都已经做到了尽早(将 CSS 放在 head 标签里)和尽快(启用 CDN 实现静态资源加载速度的优化)。这个“把 CSS 往前放”的动作,对很多同学来说已经内化为一种编码习惯。那么现在我们还应该知道,这个“习惯”不是空穴来风,它是由 CSS 的特性决定的。
JS的阻塞
在首次渲染过程中,JS 并不是一个非登场不可的角色——没有 JS,CSSOM 和 DOM 照样可以组成渲染树,页面依然会呈现——即使它死气沉沉、毫无交互。
JS 的作用在于修改,它帮助我们修改网页的方方面面:内容、样式以及它如何响应用户交互。这“方方面面”的修改,本质上都是对 DOM 和 CSSDOM 进行修改。因此 JS 的执行会阻止 CSSOM,在我们不作显式声明的情况下,它也会阻塞 DOM。
JS 的作用在于修改,它帮助我们修改网页的方方面面:内容、样式以及它如何响应用户交互。这“方方面面”的修改,本质上都是对 DOM 和 CSSDOM 进行修改。因此 JS 的执行会阻止 CSSOM,在我们不作显式声明的情况下,它也会阻塞 DOM。
JS 引擎是独立于渲染引擎存在的。我们的 JS 代码在文档的何处插入,就在何处执行。当 HTML 解析器遇到一个 script 标签时,它会暂停渲染过程,将控制权交给 JS 引擎。JS 引擎对内联的 JS 代码会直接执行,对外部 JS 文件还要先获取到脚本、再进行执行。等 JS 引擎运行完毕,浏览器又会把控制权还给渲染引擎,继续 CSSOM 和 DOM 的构建。 因此与其说是 JS 把 CSS 和 HTML 阻塞了,不如说是 JS 引擎抢走了渲染引擎的控制权。
现在理解了阻塞的表现与原理,我们开始思考一个问题。浏览器之所以让 JS 阻塞其它的活动,是因为它不知道 JS 会做什么改变,担心如果不阻止后续的操作,会造成混乱。但是我们是写 JS 的人,我们知道 JS 会做什么改变。假如我们可以确认一个 JS 文件的执行时机并不一定非要是此时此刻,我们就可以通过对它使用 defer 和 async 来避免不必要的阻塞,这里我们就引出了外部 JS 的三种加载方式。
现在理解了阻塞的表现与原理,我们开始思考一个问题。浏览器之所以让 JS 阻塞其它的活动,是因为它不知道 JS 会做什么改变,担心如果不阻止后续的操作,会造成混乱。但是我们是写 JS 的人,我们知道 JS 会做什么改变。假如我们可以确认一个 JS 文件的执行时机并不一定非要是此时此刻,我们就可以通过对它使用 defer 和 async 来避免不必要的阻塞,这里我们就引出了外部 JS 的三种加载方式。
JS的三种加载方式
1、正常模式:
<script src="index.js"></script>
这种情况下 JS 会阻塞浏览器,浏览器必须等待 index.js 加载和执行完毕才能去做其它事情。
2、async 模式:
<script async src="index.js"></script>
async 模式下,JS 不会阻塞浏览器做任何其它的事情。它的加载是异步的,当它加载结束,JS 脚本会立即执行。
3、defer 模式:
<script defer src="index.js"></script>
defer 模式下,JS 的加载是异步的,执行是被推迟的。等整个文档解析完成、DOMContentLoaded 事件即将被触发时, 被标记了 defer 的 JS 文件才会开始依次执行。
从应用的角度来说,一般当我们的脚本与 DOM 元素和其它脚本之间的依赖关系不强时,我们会选用 async;当脚本依赖于 DOM 元素和其它脚本的执行结果时,我们会选用 defer。
通过审时度势地向 script 标签添加 async/defer,我们就可以告诉浏览器在等待脚本可用期间不阻止其它的工作,这样可以显著提升性能。
<script src="index.js"></script>
这种情况下 JS 会阻塞浏览器,浏览器必须等待 index.js 加载和执行完毕才能去做其它事情。
2、async 模式:
<script async src="index.js"></script>
async 模式下,JS 不会阻塞浏览器做任何其它的事情。它的加载是异步的,当它加载结束,JS 脚本会立即执行。
3、defer 模式:
<script defer src="index.js"></script>
defer 模式下,JS 的加载是异步的,执行是被推迟的。等整个文档解析完成、DOMContentLoaded 事件即将被触发时, 被标记了 defer 的 JS 文件才会开始依次执行。
从应用的角度来说,一般当我们的脚本与 DOM 元素和其它脚本之间的依赖关系不强时,我们会选用 async;当脚本依赖于 DOM 元素和其它脚本的执行结果时,我们会选用 defer。
通过审时度势地向 script 标签添加 async/defer,我们就可以告诉浏览器在等待脚本可用期间不阻止其它的工作,这样可以显著提升性能。
DOM 优化三个小专题
DOM优化原理与基本实践
望闻问切:DOM 为什么这么慢
因为收了“过路费”
S 引擎和渲染引擎(浏览器内核)是独立实现的。当我们用 JS 去操作 DOM 时,本质上是 JS 引擎和渲染引擎之间进行了“跨界交流”。这个“跨界交流”的实现并不简单,它依赖了桥接接口作为“桥梁”(如下图)。
过“桥”要收费——这个开销本身就是不可忽略的。我们每操作一次 DOM(不管是为了修改还是仅仅为了访问其值),都要过一次“桥”。过“桥”的次数一多,就会产生比较明显的性能问题。因此“减少 DOM 操作”的建议,并非空穴来风。
对 DOM 的修改引发样式的更迭
过桥很慢,到了桥对岸,我们的更改操作带来的结果也很慢。
很多时候,我们对 DOM 的操作都不会局限于访问,而是为了修改它。当我们对 DOM 的修改会引发它外观(样式)上的改变时,就会触发回流或重绘。
这个过程本质上还是因为我们对 DOM 的修改触发了渲染树(Render Tree)的变化所导致的:
很多时候,我们对 DOM 的操作都不会局限于访问,而是为了修改它。当我们对 DOM 的修改会引发它外观(样式)上的改变时,就会触发回流或重绘。
这个过程本质上还是因为我们对 DOM 的修改触发了渲染树(Render Tree)的变化所导致的:
回流:当我们对 DOM 的修改引发了 DOM 几何尺寸的变化(比如修改元素的宽、高或隐藏元素等)时,浏览器需要重新计算元素的几何属性(其他元素的几何属性和位置也会因此受到影响),然后再将计算的结果绘制出来。这个过程就是回流(也叫重排)。
重绘:当我们对 DOM 的修改导致了样式的变化、却并未影响其几何属性(比如修改了颜色或背景色)时,浏览器不需重新计算元素的几何属性、直接为该元素绘制新的样式(跳过了上图所示的回流环节)。这个过程叫做重绘。
重绘:当我们对 DOM 的修改导致了样式的变化、却并未影响其几何属性(比如修改了颜色或背景色)时,浏览器不需重新计算元素的几何属性、直接为该元素绘制新的样式(跳过了上图所示的回流环节)。这个过程叫做重绘。
重绘不一定导致回流,回流一定会导致重绘。硬要比较的话,回流比重绘做的事情更多,带来的开销也更大。但这两个说到底都是吃性能的,所以都不
子主题
子主题
子主题
药到病除:给你的 DOM “提提速”
减少 DOM 操作:少交“过路费”、避免过度渲染
问题代码
for(var count=0;count<10000;count++){
document.getElementById('container').innerHTML+='<span>我是一个小测试</span>'
}
document.getElementById('container').innerHTML+='<span>我是一个小测试</span>'
}
优化后
let container = document.getElementById('container')
let content = ''
for(let count=0;count<10000;count++){
// 先对内容进行操作
content += '<span>我是一个小测试</span>'
}
// 内容处理好了,最后再触发DOM的更改
container.innerHTML = content
let content = ''
for(let count=0;count<10000;count++){
// 先对内容进行操作
content += '<span>我是一个小测试</span>'
}
// 内容处理好了,最后再触发DOM的更改
container.innerHTML = content
事实上,考虑JS 的运行速度,比 DOM 快得多这个特性。我们减少 DOM 操作的核心思路,就是让 JS 去给 DOM 分压。
前面我们直接用 innerHTML 去拼接目标内容,这样做固然有用,但却不够优雅。相比之下,DOM Fragment 可以帮助我们用更加结构化的方式去达成同样的目的,从而在维持性能的同时,保住我们代码的可拓展和可维护性。
DOM Fragment
DocumentFragment 接口表示一个没有父级文件的最小文档对象。它被当做一个轻量版的 Document 使用,用于存储已排好版的或尚未打理好格式的XML片段。因为 DocumentFragment 不是真实 DOM 树的一部分,它的变化不会引起 DOM 树的重新渲染的操作(reflow),且不会导致性能等问题。
在我们上面的例子里,字符串变量 content 就扮演着一个 DOM Fragment 的角色。其实无论字符串变量也好,DOM Fragment 也罢,它们本质上都作为脱离了真实 DOM 树的容器出现,用于缓存批量化的 DOM 操作。
前面我们直接用 innerHTML 去拼接目标内容,这样做固然有用,但却不够优雅。相比之下,DOM Fragment 可以帮助我们用更加结构化的方式去达成同样的目的,从而在维持性能的同时,保住我们代码的可拓展和可维护性。我们现在用 DOM Fragment 来改写上面的例子:
在我们上面的例子里,字符串变量 content 就扮演着一个 DOM Fragment 的角色。其实无论字符串变量也好,DOM Fragment 也罢,它们本质上都作为脱离了真实 DOM 树的容器出现,用于缓存批量化的 DOM 操作。
前面我们直接用 innerHTML 去拼接目标内容,这样做固然有用,但却不够优雅。相比之下,DOM Fragment 可以帮助我们用更加结构化的方式去达成同样的目的,从而在维持性能的同时,保住我们代码的可拓展和可维护性。我们现在用 DOM Fragment 来改写上面的例子:
进一步优化
let container = document.getElementById('container')
// 创建一个DOM Fragment对象作为容器
let content = document.createDocumentFragment()
for(let count=0;count<10000;count++){
// span此时可以通过DOM API去创建
let oSpan = document.createElement("span")
oSpan.innerHTML = '我是一个小测试'
// 像操作真实DOM一样操作DOM Fragment对象
content.appendChild(oSpan)
}
// 内容处理好了,最后再触发真实DOM的更改
container.appendChild(content)
// 创建一个DOM Fragment对象作为容器
let content = document.createDocumentFragment()
for(let count=0;count<10000;count++){
// span此时可以通过DOM API去创建
let oSpan = document.createElement("span")
oSpan.innerHTML = '我是一个小测试'
// 像操作真实DOM一样操作DOM Fragment对象
content.appendChild(oSpan)
}
// 内容处理好了,最后再触发真实DOM的更改
container.appendChild(content)
我们运行这段代码,可以得到与前面两种写法相同的运行结果。
可以看出,DOM Fragment 对象允许我们像操作真实 DOM 一样去调用各种各样的 DOM API,我们的代码质量因此得到了保证。并且它的身份也非常纯粹:当我们试图将其 append 进真实 DOM 时,它会在乖乖交出自身缓存的所有后代节点后全身而退,完美地完成一个容器的使命,而不会出现在真实的 DOM 结构中。这种结构化、干净利落的特性,使得 DOM Fragment 作为经典的性能优化手段大受欢迎,这一点在 jQuery、Vue 等优秀前端框架的源码中均有体现。
可以看出,DOM Fragment 对象允许我们像操作真实 DOM 一样去调用各种各样的 DOM API,我们的代码质量因此得到了保证。并且它的身份也非常纯粹:当我们试图将其 append 进真实 DOM 时,它会在乖乖交出自身缓存的所有后代节点后全身而退,完美地完成一个容器的使命,而不会出现在真实的 DOM 结构中。这种结构化、干净利落的特性,使得 DOM Fragment 作为经典的性能优化手段大受欢迎,这一点在 jQuery、Vue 等优秀前端框架的源码中均有体现。
EventLoop与异步更新策略
前置知识:Event Loop 中的“渲染时机”
Micro-Task 与 Macro-Task
常见的 macro-task 比如: setTimeout、setInterval、 setImmediate、script(整体代码)、 I/O 操作、UI 渲染等。
常见的 micro-task 比如: process.nextTick、Promise、MutationObserver 等。
常见的 micro-task 比如: process.nextTick、Promise、MutationObserver 等。
Event Loop 过程解析
一个完整的 Event Loop 过程,可以概括为以下阶段:
1、初始状态:调用栈空。micro 队列空,macro 队列里有且只有一个 script 脚本(整体代码)。
2、全局上下文(script 标签)被推入调用栈,同步代码执行。在执行的过程中,通过对一些接口的调用,可以产生新的 macro-task 与 micro-task,它们会分别被推入各自的任务队列里。同步代码执行完了,script 脚本会被移出 macro 队列,这个过程本质上是队列的 macro-task 的执行和出队的过程。
3、上一步我们出队的是一个 macro-task,这一步我们处理的是 micro-task。但需要注意的是:当 macro-task 出队时,任务是一个一个执行的;而 micro-task 出队时,任务是一队一队执行的(如下图所示)。因此,我们处理 micro 队列这一步,会逐个执行队列中的任务并把它出队,直到队列被清空。
4、执行渲染操作,更新界面(敲黑板划重点)。
5、检查是否存在 Web worker 任务,如果有,则对其进行处理 。
(上述过程循环往复,直到两个队列都清空)
2、全局上下文(script 标签)被推入调用栈,同步代码执行。在执行的过程中,通过对一些接口的调用,可以产生新的 macro-task 与 micro-task,它们会分别被推入各自的任务队列里。同步代码执行完了,script 脚本会被移出 macro 队列,这个过程本质上是队列的 macro-task 的执行和出队的过程。
3、上一步我们出队的是一个 macro-task,这一步我们处理的是 micro-task。但需要注意的是:当 macro-task 出队时,任务是一个一个执行的;而 micro-task 出队时,任务是一队一队执行的(如下图所示)。因此,我们处理 micro 队列这一步,会逐个执行队列中的任务并把它出队,直到队列被清空。
4、执行渲染操作,更新界面(敲黑板划重点)。
5、检查是否存在 Web worker 任务,如果有,则对其进行处理 。
(上述过程循环往复,直到两个队列都清空)
渲染的时机
我们更新 DOM 的时间点,应该尽可能靠近渲染的时机。当我们需要在异步任务中实现 DOM 修改时,把它包装成 micro 任务是相对明智的选择。
生产实践:异步更新策略——以 Vue 为例
什么是异步更新?
我们更新 DOM 的时间点,应该尽可能靠近渲染的时机。当我们需要在异步任务中实现 DOM 修改时,把它包装成 micro 任务是相对明智的选择。
异步更新可以帮助我们避免过度渲染,是我们上节提到的“让 JS 为 DOM 分压”的典范之一。
异步更新可以帮助我们避免过度渲染,是我们上节提到的“让 JS 为 DOM 分压”的典范之一。
异步更新的优越性
异步更新的特性在于它只看结果,因此渲染引擎不需要为过程买单。
示例
// 任务一
this.content = '第一次测试'
// 任务二
this.content = '第二次测试'
// 任务三
this.content = '第三次测试'
this.content = '第一次测试'
// 任务二
this.content = '第二次测试'
// 任务三
this.content = '第三次测试'
我们在三个更新任务中对同一个状态修改了三次,如果我们采取传统的同步更新策略,那么就要操作三次 DOM。但本质上需要呈现给用户的目标内容其实只是第三次的结果,也就是说只有第三次的操作是有意义的——我们白白浪费了两次计算。
但如果我们把这三个任务塞进异步更新队列里,它们会先在 JS 的层面上被批量执行完毕。当流程走到渲染这一步时,它仅仅需要针对有意义的计算结果操作一次 DOM——这就是异步更新的妙处。
但如果我们把这三个任务塞进异步更新队列里,它们会先在 JS 的层面上被批量执行完毕。当流程走到渲染这一步时,它仅仅需要针对有意义的计算结果操作一次 DOM——这就是异步更新的妙处。
Vue状态更新手法:nextTick
Vue 中每产生一个状态更新任务,它就会被塞进一个叫 callbacks 的数组(此处是任务队列的实现形式)中。这个任务队列在被丢进 micro 或 macro 队列之前,会先去检查当前是否有异步更新任务正在执行(即检查 pending 锁)。如果确认 pending 锁是开着的(false),就把它设置为锁上(true),然后对当前 callbacks 数组的任务进行派发(丢进 micro 或 macro 队列)和执行。设置 pending 锁的意义在于保证状态更新任务的有序进行,避免发生混乱。
子主题
子主题
子主题
子主题
子主题
子主题
子主题
回流与重绘
哪些实际操作会导致回流与重绘
最“贵”的操作:改变 DOM 元素的几何属性
“价格适中”的操作:改变 DOM 树的结构
最容易被忽略的操作:获取一些特定属性的值
当你要用到像这样的属性:offsetTop、offsetLeft、 offsetWidth、offsetHeight、scrollTop、scrollLeft、scrollWidth、scrollHeight、clientTop、clientLeft、clientWidth、clientHeight 时,你就要注意了!
“像这样”的属性,到底是像什么样?——这些值有一个共性,就是需要通过即时计算得到。因此浏览器为了获取这些值,也会进行回流。
除此之外,当我们调用了 getComputedStyle 方法,或者 IE 里的 currentStyle 时,也会触发回流。原理是一样的,都为求一个“即时性”和“准确性”。
“像这样”的属性,到底是像什么样?——这些值有一个共性,就是需要通过即时计算得到。因此浏览器为了获取这些值,也会进行回流。
除此之外,当我们调用了 getComputedStyle 方法,或者 IE 里的 currentStyle 时,也会触发回流。原理是一样的,都为求一个“即时性”和“准确性”。
如何规避回流与重绘
将引起重绘的行为缓存起来,避免频繁改动
避免逐条改变样式,使用类名去合并样式
将 DOM “离线”
我们上文所说的回流和重绘,都是在“该元素位于页面上”的前提下会发生的。一旦我们给元素设置 display: none,将其从页面上“拿掉”,那么我们的后续操作,将无法触发回流与重绘——这个将元素“拿掉”的操作,就叫做 DOM 离线化。
当我们只需要进行很少的 DOM 操作时,DOM 离线化的优越性确实不太明显。一旦操作频繁起来,这“拿掉”和“放回”的开销都将会是非常值得的。
当我们只需要进行很少的 DOM 操作时,DOM 离线化的优越性确实不太明显。一旦操作频繁起来,这“拿掉”和“放回”的开销都将会是非常值得的。
Flush 队列:浏览器并没有那么简单
因为现代浏览器是很聪明的。浏览器自己也清楚,如果每次 DOM 操作都即时地反馈一次回流或重绘,那么性能上来说是扛不住的。于是它自己缓存了一个 flush 队列,把我们触发的回流与重绘任务都塞进去,待到队列里的任务多起来、或者达到了一定的时间间隔,或者“不得已”的时候,再将这些任务一口气出队。因此我们看到,上面就算我们进行了 4 次 DOM 更改,也只触发了一次 Layout 和一次 Paint。
大家这里尤其小心这个“不得已”的时候。前面我们在介绍回流的“导火索”的时候,提到过有一类属性很特别,它们有很强的“即时性”。当我们访问这些属性时,浏览器会为了获得此时此刻的、最准确的属性值,而提前将 flush 队列的任务出队——这就是所谓的“不得已”时刻。
大家这里尤其小心这个“不得已”的时候。前面我们在介绍回流的“导火索”的时候,提到过有一类属性很特别,它们有很强的“即时性”。当我们访问这些属性时,浏览器会为了获得此时此刻的、最准确的属性值,而提前将 flush 队列的任务出队——这就是所谓的“不得已”时刻。
应用
优化首屏体验——Lazy-Load 初探
为什么使用懒加载
。。。。
如何实现懒加载
在懒加载的实现中,有两个关键的数值:一个是当前可视区域的高度,另一个是元素距离可视区域顶部的高度。
当前可视区域的高度
在现代浏览器及 IE9 以上的浏览器中,可以用 window.innerHeight 属性获取。在低版本 IE 的标准模式中,可以用 document.documentElement.clientHeight 获取,这里我们兼容两种情况:
const viewHeight = window.innerHeight || document.documentElement.clientHeight
const viewHeight = window.innerHeight || document.documentElement.clientHeight
元素距离可视区域顶部的高度
我们这里选用 getBoundingClientRect() 方法来获取返回元素的大小及其相对于视口的位置。对此 MDN 给出了非常清晰的解释:
该方法的返回值是一个 DOMRect 对象,这个对象是由该元素的 getClientRects() 方法返回的一组矩形的集合, 即:是与该元素相关的 CSS 边框集合 。
DOMRect 对象包含了一组用于描述边框的只读属性——left、top、right 和 bottom,单位为像素。除了 width 和 height 外的属性都是相对于视口的左上角位置而言的。
该方法的返回值是一个 DOMRect 对象,这个对象是由该元素的 getClientRects() 方法返回的一组矩形的集合, 即:是与该元素相关的 CSS 边框集合 。
DOMRect 对象包含了一组用于描述边框的只读属性——left、top、right 和 bottom,单位为像素。除了 width 和 height 外的属性都是相对于视口的左上角位置而言的。
其中需要引起我们注意的就是 left、top、right 和 bottom,它们对应到元素上是这样的:
可以看出,top 属性代表了元素距离可视区域顶部的高度,正好可以为我们所用!
可以看出,top 属性代表了元素距离可视区域顶部的高度,正好可以为我们所用!
实现
懒加载实现
注意
个 scroll 事件,是一个危险的事件——它太容易被触发了。试想,用户在访问网页的时候,是不是可以无限次地去触发滚动?尤其是一个页面死活加载不出来的时候,疯狂调戏鼠标滚轮(或者浏览器滚动条)的用户可不在少数啊!
再回头看看我们上面写的代码。按照我们的逻辑,用户的每一次滚动都将触发我们的监听函数。函数执行是吃性能的,频繁地响应某个事件将造成大量不必要的页面计算。因此,我们需要针对那些有可能被频繁触发的事件作进一步地优化。这里就引出了我们下一节的两位主角——throttle 与 debounce。
再回头看看我们上面写的代码。按照我们的逻辑,用户的每一次滚动都将触发我们的监听函数。函数执行是吃性能的,频繁地响应某个事件将造成大量不必要的页面计算。因此,我们需要针对那些有可能被频繁触发的事件作进一步地优化。这里就引出了我们下一节的两位主角——throttle 与 debounce。
实践的节流与防抖
“节流”与“防抖”的本质
这两个东西都以闭包的形式存在。
它们通过对事件对应的回调函数进行包裹、以自由变量的形式缓存时间信息,最后用 setTimeout 来控制事件的触发频率。
它们通过对事件对应的回调函数进行包裹、以自由变量的形式缓存时间信息,最后用 setTimeout 来控制事件的触发频率。
Throttle: 第一个人说了算
throttle 的中心思想在于:在某段时间内,不管你触发了多少次回调,我都只认第一次,并在计时结束时给予响应。
先给大家讲个小故事:现在有一个旅客刚下了飞机,需要用车,于是打电话叫了该机场唯一的一辆机场大巴来接。司机开到机场,心想来都来了,多接几个人一起走吧,这样这趟才跑得值——我等个十分钟看看。于是司机一边打开了计时器,一边招呼后面的客人陆陆续续上车。在这十分钟内,后面下飞机的乘客都只能乘这一辆大巴,十分钟过去后,不管后面还有多少没挤上车的乘客,这班车都必须发走。
在这个故事里,“司机” 就是我们的节流阀,他控制发车的时机;“乘客”就是因为我们频繁操作事件而不断涌入的回调任务,它需要接受“司机”的安排;而“计时器”,就是我们上文提到的以自由变量形式存在的时间信息,它是“司机”决定发车的依据;最后“发车”这个动作,就对应到回调函数的执行。
总结下来,所谓的“节流”,是通过在一段时间内无视后来产生的回调请求来实现的。只要一位客人叫了车,司机就会为他开启计时器,一定的时间内,后面需要乘车的客人都得排队上这一辆车,谁也无法叫到更多的车。
对应到实际的交互上是一样一样的:每当用户触发了一次 scroll 事件,我们就为这个触发操作开启计时器。一段时间内,后续所有的 scroll 事件都会被当作“一辆车的乘客”——它们无法触发新的 scroll 回调。直到“一段时间”到了,第一次触发的 scroll 事件对应的回调才会执行,而“一段时间内”触发的后续的 scroll 回调都会被节流阀无视掉。
在这个故事里,“司机” 就是我们的节流阀,他控制发车的时机;“乘客”就是因为我们频繁操作事件而不断涌入的回调任务,它需要接受“司机”的安排;而“计时器”,就是我们上文提到的以自由变量形式存在的时间信息,它是“司机”决定发车的依据;最后“发车”这个动作,就对应到回调函数的执行。
总结下来,所谓的“节流”,是通过在一段时间内无视后来产生的回调请求来实现的。只要一位客人叫了车,司机就会为他开启计时器,一定的时间内,后面需要乘车的客人都得排队上这一辆车,谁也无法叫到更多的车。
对应到实际的交互上是一样一样的:每当用户触发了一次 scroll 事件,我们就为这个触发操作开启计时器。一段时间内,后续所有的 scroll 事件都会被当作“一辆车的乘客”——它们无法触发新的 scroll 回调。直到“一段时间”到了,第一次触发的 scroll 事件对应的回调才会执行,而“一段时间内”触发的后续的 scroll 回调都会被节流阀无视掉。
Debounce: 最后一个人说了算
防抖的中心思想在于:我会等你到底。在某段时间内,不管你触发了多少次回调,我都只认最后一次。
继续讲司机开车的故事。这次的司机比较有耐心。第一个乘客上车后,司机开始计时(比如说十分钟)。十分钟之内,如果又上来了一个乘客,司机会把计时器清零,重新开始等另一个十分钟(延迟了等待)。直到有这么一位乘客,从他上车开始,后续十分钟都没有新乘客上车,司机会认为确实没有人需要搭这趟车了,才会把车开走。
我们对比 throttle 来理解 debounce:在throttle的逻辑里,“第一个人说了算”,它只为第一个乘客计时,时间到了就执行回调。而 debounce 认为,“最后一个人说了算”,debounce 会为每一个新乘客设定新的定时器。
我们对比 throttle 来理解 debounce:在throttle的逻辑里,“第一个人说了算”,它只为第一个乘客计时,时间到了就执行回调。而 debounce 认为,“最后一个人说了算”,debounce 会为每一个新乘客设定新的定时器。
用 Throttle 来优化 Debounce
debounce 的问题在于它“太有耐心了”。试想,如果用户的操作十分频繁——他每次都不等 debounce 设置的 delay 时间结束就进行下一次操作,于是每次 debounce 都为该用户重新生成定时器,回调函数被延迟了不计其数次。频繁的延迟会导致用户迟迟得不到响应,用户同样会产生“这个页面卡死了”的观感。
为了避免弄巧成拙,我们需要借力 throttle 的思想,打造一个“有底线”的 debounce——等你可以,但我有我的原则:delay 时间内,我可以为你重新生成定时器;但只要delay的时间到了,我必须要给用户一个响应。这个 throttle 与 debounce “合体”思路,已经被很多成熟的前端库应用到了它们的加强版 throttle 函数的实现中
为了避免弄巧成拙,我们需要借力 throttle 的思想,打造一个“有底线”的 debounce——等你可以,但我有我的原则:delay 时间内,我可以为你重新生成定时器;但只要delay的时间到了,我必须要给用户一个响应。这个 throttle 与 debounce “合体”思路,已经被很多成熟的前端库应用到了它们的加强版 throttle 函数的实现中
性能检测
—Performance、LightHouse 与性能 API
—Performance、LightHouse 与性能 API
平时我们比较推崇的性能监测方案主要有两种:可视化方案、可编程方案
可视化监测:从 Performance 面板说起
Performance 是 Chrome 提供给我们的开发者工具,用于记录和分析我们的应用在运行时的所有活动。它呈现的数据具有实时性、多维度的特点,可以帮助我们很好地定位性能问题。
开始记录
简要分析
Performance 无疑可以为我们提供很多有价值的信息,但它的展示作用大于分析作用。它要求使用者对工具本身及其所展示的信息有充分的理解,能够将晦涩的数据“翻译”成具体的性能问题。
可视化监测: 更加聪明的 LightHouse
Lighthouse 是一个开源的自动化工具,用于改进网络应用的质量。 你可以将其作为一个 Chrome 扩展程序运行,或从命令行运行。 为Lighthouse 提供一个需要审查的网址,它将针对此页面运行一连串的测试,然后生成一个有关页面性能的报告。
敲黑板划重点:它生成的是一个报告!Report!不是干巴巴地数据,而是一个通过测试与分析呈现出来的结果(它甚至会给你的页面跑一个分数出来)。这个东西看起来也真是太赞了,我们这就来体验一下!
可编程的性能上报方案: W3C 性能 API
W3C 规范为我们提供了 Performance 相关的接口。它允许我们获取到用户访问一个页面的每个阶段的精确时间,从而对性能进行分析。我们可以将其理解为 Performance 面板的进一步细化与可编程化
访问 performance 对象
以上这些通过 Performance API 获取到的时间信息都具有较高的准确度。我们可以对此进行一番格式处理之后上报给服务端,也可以基于此去制作相应的统计图表,从而实现更加精准、更加个性化的性能耗时统计。
此外,通过访问 performance 的 memory 属性,我们还可以获取到内存占用相关的数据;通过对 performance 的其它属性方法的灵活运用,我们还可以把它耦合进业务里,实现更加多样化的性能监测需求——灵活,是可编程化方案最大的优点。
此外,通过访问 performance 的 memory 属性,我们还可以获取到内存占用相关的数据;通过对 performance 的其它属性方法的灵活运用,我们还可以把它耦合进业务里,实现更加多样化的性能监测需求——灵活,是可编程化方案最大的优点。
0 条评论
下一页