Java
2021-06-28 22:36:39 0 举报
AI智能生成
javase基础思维导图
作者其他创作
大纲/内容
Java基础
数据类型
基本数据类型
byte/8
chat/16
short/16
int/32
float/32
long/64
double/64
boolean/~
JVM 会在编译时期将 boolean 类型的数据转换为 int,使用 1 来表示 true,0 表示 false。
包装类型
基本类型都有对应的包装类型,基本类型与其对应的包装类型之间的赋值使用自动装箱与拆箱完成。
缓存池
new Integer(123) 与 Integer.valueOf(123) 的区别
new Integer(123) 每次都会新建一个对象
Integer.valueOf(123) 会使用缓存池中的对象,多次调用会取得同一个对象的引用
valueOf() 方法的实现比较简单,就是先判断值是否在缓存池中,如果在的话就直接返回缓存池的内容。
在 Java 8 中,Integer 缓存池的大小默认为 -128~127
编译器会在自动装箱过程调用 valueOf() 方法,因此多个值相同且值在缓存池范围内的 Integer 实例使用自动装箱来创建,那么就会引用相同的对象。
在使用这些基本类型对应的包装类型时,如果该数值范围在缓冲池范围内,就可以直接使用缓冲池中的对象。
在 jdk 1.8 所有的数值类缓冲池中,Integer 的缓冲池 IntegerCache 很特殊,这个缓冲池的下界是 - 128,上界默认是 127,但是这个上界是可调的,在启动 jvm 的时候,通过 -XX:AutoBoxCacheMax=<size> 来指定这个缓冲池的大小,该选项在 JVM 初始化的时候会设定一个名为 java.lang.IntegerCache.high 系统属性,然后 IntegerCache 初始化的时候就会读取该系统属性来决定上界。
String
概览
String 被声明为 final,因此它不可被继承。(Integer 等包装类也不能被继承)
在Java8和Java9中的区别
在 Java 8 中,String 内部使用 char 数组存储数据
在 Java 9 之后,String 类的实现改用 byte 数组存储字符串,同时使用 coder 来标识使用了哪种编码。
value 数组被声明为 final,这意味着 value 数组初始化之后就不能再引用其它数组。并且 String 内部没有改变 value 数组的方法,因此可以保证 String 不可变。
不可变的好处
可以缓存hash值
因为 String 的 hash 值经常被使用,例如 String 用做 HashMap 的 key。不可变的特性可以使得 hash 值也不可变,因此只需要进行一次计算。
StringPool的需要
如果一个 String 对象已经被创建过了,那么就会从 String Pool 中取得引用。只有 String 是不可变的,才可能使用 String Pool。
安全性
String经常作为参数,不可变性可以保证参数的不可变
线程安全
String 不可变性天生具备线程安全,可以在多个线程中安全地使用
String, StringBuffer and StringBuilder
不可变性
String 不可变
StringBuffer 和 StringBuilder 可变
线程安全
String 不可变,因此是线程安全的
StringBuffer 是线程安全的,内部使用 synchronized 进行同步
StringBuilder 不是线程安全的
String Pool
字符串常量池(String Pool)保存着所有字符串字面量(literal strings),这些字面量在编译时期就确定。不仅如此,还可以使用 String 的 intern() 方法在运行过程将字符串添加到 String Pool 中。
当一个字符串调用 intern() 方法时,如果 String Pool 中已经存在一个字符串和该字符串值相等(使用 equals() 方法进行确定),那么就会返回 String Pool 中字符串的引用;否则,就会在 String Pool 中添加一个新的字符串,并返回这个新字符串的引用。
下面示例中,s1 和 s2 采用 new String() 的方式新建了两个不同字符串,而 s3 和 s4 是通过 s1.intern() 方法取得同一个字符串引用。intern() 首先把 s1 引用的字符串放到 String Pool 中,然后返回这个字符串引用。因此 s3 和 s4 引用的是同一个字符串。
如果是采用 "bbb" 这种字面量的形式创建字符串,会自动地将字符串放入 String Pool 中。
在 Java 7 之前,String Pool 被放在运行时常量池中,它属于永久代。而在 Java 7,String Pool 被移到堆中。这是因为永久代的空间有限,在大量使用字符串的场景下会导致 OutOfMemoryError 错误。
new String("abc")
使用这种方式一共会创建两个字符串对象(前提是 String Pool 中还没有 "abc" 字符串对象)
"abc" 属于字符串字面量,因此编译时期会在 String Pool 中创建一个字符串对象,指向这个 "abc" 字符串字面量;
而使用 new 的方式会在堆中创建一个字符串对象。
以下是 String 构造函数的源码,可以看到,在将一个字符串对象作为另一个字符串对象的构造函数参数时,并不会完全复制 value 数组内容,而是都会指向同一个 value 数组。
运算
参数传递
Java 的参数是以值传递的形式传入方法中,而不是引用传递
以下代码中 Dog dog 的 dog 是一个指针,存储的是对象的地址。在将一个参数传入一个方法时,本质上是将对象的地址以值的方式传递到形参中。
在方法中改变对象的字段值会改变原对象该字段值,因为引用的是同一个对象。
但是在方法中将指针引用了其它对象,那么此时方法里和方法外的两个指针指向了不同的对象,在一个指针改变其所指向对象的内容对另一个指针所指向的对象没有影响
float 与 double
Java 不能隐式执行向下转型,因为这会使得精度降低
1.1 字面量属于 double 类型,不能直接将 1.1 直接赋值给 float 变量,因为这是向下转型
1.1f 字面量才是 float 类型
隐式类型转换
因为字面量 1 是 int 类型,它比 short 类型精度要高,因此不能隐式地将 int 类型向下转型为 short 类型。
但是使用 += 或者 ++ 运算符会执行隐式类型转换
switch
从 Java 7 开始,可以在 switch 条件判断语句中使用 String 对象
switch 不支持 long,是因为 switch 的设计初衷是对那些只有少数几个值的类型进行等值判断,如果值过于复杂,那么还是用 if 比较合适
关键字
final
数据
声明数据为常量,可以是编译时常量,也可以是在运行时被初始化后不能被改变的常量
对于基本类型,final 使数值不变;
对于引用类型,final 使引用不变,也就不能引用其它对象,但是被引用的对象本身是可以修改的
方法
声明方法不能被子类重写。
private 方法隐式地被指定为 final,如果在子类中定义的方法和基类中的一个 private 方法签名相同,此时子类的方法不是重写基类方法,而是在子类中定义了一个新的方法。
类
申明类不允许被继承
static
静态变量
静态变量:又称为类变量,也就是说这个变量属于类的,类所有的实例都共享静态变量,可以直接通过类名来访问它。静态变量在内存中只存在一份。
实例变量:每创建一个实例就会产生一个实例变量,它与该实例同生共死
静态方法
静态方法在类加载的时候就存在了,它不依赖于任何实例。所以静态方法必须有实现,也就是说它不能是抽象方法。
只能访问所属类的静态字段和静态方法,方法中不能有 this 和 super 关键字,因为这两个关键字与具体对象关联
静态语句块
静态语句块在类初始化时运行一次
静态内部类
非静态内部类依赖于外部类的实例,也就是说需要先创建外部类实例,才能用这个实例去创建非静态内部类。而静态内部类不需要。
静态内部类不能访问外部类的非静态的变量和方法。
初始化顺序
静态变量和静态语句块优先于实例变量和普通语句块,静态变量和静态语句块的初始化顺序取决于它们在代码中的顺序。
存在继承的情况
父类(静态变量、静态语句块)
子类(静态变量、静态语句块)
父类(实例变量、普通语句块)
父类(构造函数)
子类(实例变量、普通语句块)
子类(构造函数)
Object通用方法
概览
equals()
两个对象具有等价关系,需要满足以下五个条件
自反性
对称性
传递性
一致性
多次调用 equals() 方法结果不变
对任何不是 null 的对象 x 调用 x.equals(null) 结果都为 false
等价与相等
对于基本类型,== 判断两个值是否相等,基本类型没有 equals() 方法
对于引用类型,== 判断两个变量是否引用同一个对象,而 equals() 判断引用的对象是否等价
实现
检查是否为同一个对象的引用,如果是直接返回 true
检查是否是同一个类型,如果不是,直接返回 false
将 Object 对象进行转型
判断每个关键域是否相等
hashCode()
hashCode() 返回哈希值,而 equals() 是用来判断两个对象是否等价。等价的两个对象散列值一定相同,但是散列值相同的两个对象不一定等价,这是因为计算哈希值具有随机性,两个值不同的对象可能计算出相同的哈希值。
在覆盖 equals() 方法时应当总是覆盖 hashCode() 方法,保证等价的两个对象哈希值也相等
HashSet 和 HashMap 等集合类使用了 hashCode() 方法来计算对象应该存储的位置,因此要将对象添加到这些集合类中,需要让对应的类实现 hashCode() 方法。
下面的代码中,新建了两个等价的对象,并将它们添加到 HashSet 中。我们希望将这两个对象当成一样的,只在集合中添加一个对象。但是 EqualExample 没有实现 hashCode() 方法,因此这两个对象的哈希值是不同的,最终导致集合添加了两个等价的对象。
理想的哈希函数应当具有均匀性,即不相等的对象应当均匀分布到所有可能的哈希值上。这就要求了哈希函数要把所有域的值都考虑进来。可以将每个域都当成 R 进制的某一位,然后组成一个 R 进制的整数。
R 一般取 31,因为它是一个奇素数,如果是偶数的话,当出现乘法溢出,信息就会丢失,因为与 2 相乘相当于向左移一位,最左边的位丢失。并且一个数与 31 相乘可以转换成移位和减法:31*x == (x<<5)-x,编译器会自动进行这个优化。
toString()
返回对象的字符串形式,默认返回 ToStringExample@4554617c 这种形式,其中 @ 后面的数值为散列码的无符号十六进制表示。
clone()
cloneable接口
clone() 是 Object 的 protected 方法,它不是 public,一个类不显式去重写 clone(),其它类就不能直接去调用该类实例的 clone() 方法。
重写 clone() 得到以下实现
以上抛出了 CloneNotSupportedException,这是因为 CloneExample 没有实现 Cloneable 接口。
应该注意的是,clone() 方法并不是 Cloneable 接口的方法,而是 Object 的一个 protected 方法。Cloneable 接口只是规定,如果一个类没有实现 Cloneable 接口又调用了 clone() 方法,就会抛出 CloneNotSupportedException。
浅拷贝
拷贝对象和原始对象的引用类型引用同一个对象
深拷贝
拷贝对象和原始对象的引用类型引用不同对象
clone()替代方法
使用 clone() 方法来拷贝一个对象即复杂又有风险,它会抛出异常,并且还需要类型转换。Effective Java 书上讲到,最好不要去使用 clone(),可以使用拷贝构造函数或者拷贝工厂来拷贝一个对象。
继承
访问权限
Java 中有三个访问权限修饰符:private、protected 以及 public,如果不加访问修饰符,表示包级可见。
protected 用于修饰成员,表示在继承体系中成员对于子类可见
如果子类的方法重写了父类的方法,那么子类中该方法的访问级别不允许低于父类的访问级别。这是为了确保可以使用父类实例的地方都可以使用子类实例去代替,也就是确保满足里氏替换原则。
字段决不能是公有的,因为这么做的话就失去了对这个字段修改行为的控制,客户端可以对其随意修改。可以使用公有的 getter 和 setter 方法来替换公有字段,这样的话就可以控制对字段的修改行为。
抽象类与接口
抽象类
抽象类和抽象方法都使用 abstract 关键字进行声明。如果一个类中包含抽象方法,那么这个类必须声明为抽象类
抽象类和普通类最大的区别是,抽象类不能被实例化,只能被继承
接口
接口是抽象类的延伸,在 Java 8 之前,它可以看成是一个完全抽象的类,也就是说它不能有任何的方法实现。
从 Java 8 开始,接口也可以拥有默认的方法实现,这是因为不支持默认方法的接口的维护成本太高了。在 Java 8 之前,如果一个接口想要添加新的方法,那么要修改所有实现了该接口的类,让它们都实现新增的方法。
接口的成员(字段 + 方法)默认都是 public 的,并且不允许定义为 private 或者 protected
接口的字段默认都是 static 和 final 的
比较
从设计层面上看,抽象类提供了一种 IS-A 关系,需要满足里式替换原则,即子类对象必须能够替换掉所有父类对象。而接口更像是一种 LIKE-A 关系,它只是提供一种方法实现契约,并不要求接口和实现接口的类具有 IS-A 关系。
从使用上来看,一个类可以实现多个接口,但是不能继承多个抽象类
接口的字段只能是 static 和 final 类型的,而抽象类的字段没有这种限制
接口的成员只能是 public 的,而抽象类的成员可以有多种访问权限
使用选择
使用接口
需要让不相关的类都实现一个方法,例如不相关的类都可以实现 Comparable 接口中的 compareTo() 方法
需要使用多重继承
使用抽象类
需要让相关的类共享代码
需要能控制继承来的成员的访问权限,而不是都为 public
需要继承非静态和非常量字段
在很多情况下,接口优先于抽象类。因为接口没有抽象类严格的类层次结构要求,可以灵活地为一个类添加行为。并且从 Java 8 开始,接口也可以有默认的方法实现,使得修改接口的成本也变的很低
super
访问父类的构造函数:可以使用 super() 函数访问父类的构造函数,从而委托父类完成一些初始化的工作。应该注意到,子类一定会调用父类的构造函数来完成初始化工作,一般是调用父类的默认构造函数,如果子类需要调用父类其它构造函数,那么就可以使用 super() 函数
访问父类的成员:如果子类重写了父类的某个方法,可以通过使用 super 关键字来引用父类的方法实现。
重写与重载
重写
存在于继承体系中,指子类实现了一个与父类在方法声明上完全相同的一个方法
为了满足里式替换原则,重写有以下三个限制
子类方法的访问权限必须大于等于父类方法
子类方法的返回类型必须是父类方法返回类型或为其子类型
子类方法抛出的异常类型必须是父类抛出异常类型或为其子类型
使用 @Override 注解,可以让编译器帮忙检查是否满足上面的三个限制条件
在调用一个方法时,先从本类中查找看是否有对应的方法,如果没有再到父类中查看,看是否从父类继承来。否则就要对参数进行转型,转成父类之后看是否有对应的方法。总的来说,方法调用的优先级为:
this.func(this)
super.func(this)
this.func(super)
super.func(super)
this.func(this)
super.func(this)
this.func(super)
super.func(super)
重载
存在于同一个类中,指一个方法与已经存在的方法名称上相同,但是参数类型、个数、顺序至少有一个不同。
应该注意的是,返回值不同,其它都相同不算是重载。
反射
每个类都有一个 Class 对象,包含了与类有关的信息。当编译一个新类时,会产生一个同名的 .class 文件,该文件内容保存着 Class 对象。
类加载相当于 Class 对象的加载,类在第一次使用时才动态加载到 JVM 中。也可以使用 Class.forName("com.mysql.jdbc.Driver") 这种方式来控制类的加载,该方法会返回一个 Class 对象。
反射可以提供运行时的类信息,并且这个类可以在运行时才加载进来,甚至在编译时期该类的 .class 不存在也可以加载进来。
Class 和 java.lang.reflect 一起对反射提供了支持,java.lang.reflect 类库主要包含了以下三个类
Filed
可以使用 get() 和 set() 方法读取和修改 Field 对象关联的字段
Method
可以使用 invoke() 方法调用与 Method 对象关联的方法
Constructor
可以用 Constructor 的 newInstance() 创建新的对象
异常
Throwable
Error
Error 用来表示 JVM 无法处理的错误
Exception
受检异常
需要用 try...catch... 语句捕获并进行处理,并且可以从异常中恢复;
非受检异常
是程序运行时错误,例如除 0 会引发 Arithmetic Exception,此时程序崩溃并且无法恢复。
泛型
JRE or JDK
JRE:Java Runtime Environment,Java 运行环境的简称,为 Java 的运行提供了所需的环境
JDK:Java Development Kit,Java 开发工具包,提供了 Java 的开发及运行环境。JDK 是 Java 开发的核心,集成了 JRE 以及一些其它的工具,比如编译 Java 源码的编译器 javac 等
Comparable和Comparator
初步理解
接口都可以用来实现集合中元素的比较、排序,Comparator位于包java.util下,而Comparable位于包java.lang下,Comparable接口将比较代码嵌入自身类中,而后者在一个独立的类中实现比较。
像Integer、String等这些基本类型的JAVA封装类都已经实现了Comparable接口,这些类对象本身就支持自比较,直接调用Collections.sort()就可以对集合中元素的排序,无需自己去实现Comparable接口。
而有些自定义类的List序列,当这个对象不支持自比较或者自比较函数不能满足你的要求时,你可以写一个比较器来完成两个对象之间大小的比较,也就是指定使用Comparator(临时规则排序,也称作专门规则排序),如果不指定Comparator,那么就用自然规则排序,这里的自然顺序就是实现Comparable接口设定的排序方式。
区别
升序、降序问题
Comparator中的compare方法
升序
降序
Comparable中的compareTo方法
升序
降序
Java集合
容器
Collection
Collection 存储着对象的集合
Set
TreeSet
基于红黑树实现,支持有序性操作,例如根据一个范围查找元素的操作。但是查找效率不如 HashMap,HashSet 查找的时间复杂度为 O(1),TreeSet 则为 O(logN)
HashSet
基于哈希表实现,支持快速查找,但不支持有序性操作。并且失去了元素的插入顺序信息,也就是说使用 Iterator 遍历 HashSet 得到的结果是不确定的
LinkedHashSet
具有 HashSet 的查找效率,并且内部使用双向链表维护元素的插入顺序
List
ArrayList
基于动态数组实现,支持随机访问
Vector
和 ArrayList 类似,但它是线程安全的
LinkedList
基于双向链表实现,只能顺序访问,但是可以快速地在链表中间插入和删除元素。不仅如此,LinkedList 还可以用作栈、队列和双向队列。
Queue
LinkedList
可以用它来实现双向队列
PriorityQueue
基于堆结构实现,可以用它来实现优先队列
Map
Map 存储着键值对(两个对象)的映射表
TreeMap
基于红黑树实现
HashMap
基于哈希表实现
HashTable
和 HashMap 类似,但它是线程安全的,这意味着同一时刻多个线程同时写入 HashTable 不会导致数据不一致。它是遗留类,不应该去使用它,而是使用 ConcurrentHashMap 来支持线程安全,ConcurrentHashMap 的效率会更高,因为 ConcurrentHashMap 引入了分段锁。
LinkedHashMap
使用双向链表来维护元素的顺序,顺序为插入顺序或者最近最少使用(LRU)顺序。
容器中的设计模式
迭代器模式
Collection 继承了 Iterable 接口,其中的 iterator() 方法能够产生一个 Iterator 对象,通过这个对象就可以迭代遍历 Collection 中的元素。
从 JDK 1.5 之后可以使用 foreach 方法来遍历实现了 Iterable 接口的聚合对象
适配器模式
java.util.Arrays#asList() 可以把数组类型转换为 List 类型。
应该注意的是 asList() 的参数为泛型的变长参数,不能使用基本类型数组作为参数,只能使用相应的包装类型数组。
也可以使用以下方式调用 asList()
源码分析(基于JDK 1.8)
ArrayList
结构
因为 ArrayList 是基于数组实现的,所以支持快速随机访问。RandomAccess 接口标识着该类支持快速随机访问。
数组的默认大小为 10。
扩容
添加元素时使用 ensureCapacityInternal() 方法来保证容量足够,如果不够时,需要使用 grow() 方法进行扩容,新容量的大小为 oldCapacity + (oldCapacity >> 1),也就是旧容量的 1.5 倍。
扩容操作需要调用 Arrays.copyOf() 把原数组整个复制到新数组中,这个操作代价很高,因此最好在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数
删除元素
需要调用 System.arraycopy() 将 index+1 后面的元素都复制到 index 位置上,该操作的时间复杂度为 O(N),可以看到 ArrayList 删除元素的代价是非常高的。
序列化
ArrayList 基于数组实现,并且具有动态扩容特性,因此保存元素的数组不一定都会被使用,那么就没必要全部进行序列化。
保存元素的数组 elementData 使用 transient 修饰,该关键字声明数组默认不会被序列化。
ArrayList 实现了 writeObject() 和 readObject() 来控制只序列化数组中有元素填充那部分内容。
序列化时需要使用 ObjectOutputStream 的 writeObject() 将对象转换为字节流并输出。而 writeObject() 方法在传入的对象存在 writeObject() 的时候会去反射调用该对象的 writeObject() 来实现序列化。反序列化使用的是 ObjectInputStream 的 readObject() 方法,原理类似。
Vector
同步
它的实现与 ArrayList 类似,但是使用了 synchronized 进行同步
扩容
Vector 的构造函数可以传入 capacityIncrement 参数,它的作用是在扩容时使容量 capacity 增长 capacityIncrement。如果这个参数的值小于等于 0,扩容时每次都令 capacity 为原来的两倍。
调用没有 capacityIncrement 的构造函数时,capacityIncrement 值被设置为 0,也就是说默认情况下 Vector 每次扩容时容量都会翻倍。
与ArrayList的比较
Vector 是同步的,因此开销就比 ArrayList 要大,访问速度更慢。最好使用 ArrayList 而不是 Vector,因为同步操作完全可以由程序员自己来控制;
Vector 每次扩容请求其大小的 2 倍(也可以通过构造函数设置增长的容量),而 ArrayList 是 1.5 倍。
替代方案
可以使用 Collections.synchronizedList(); 得到一个线程安全的 ArrayList。
也可以使用 concurrent 并发包下的 CopyOnWriteArrayList 类
CopyOnWriteArrayList
读写分离
写操作在一个复制的数组上进行,读操作还是在原始数组中进行,读写分离,互不影响。
写操作需要加锁,防止并发写入时导致写入数据丢失。
写操作结束之后需要把原始数组指向新的复制数组
适用场景
CopyOnWriteArrayList 在写操作的同时允许读操作,大大提高了读操作的性能,因此很适合读多写少的应用场景。
CopyOnWriteArrayList 不适合内存敏感以及对实时性要求很高的场景
缺陷
内存占用:在写操作时需要复制一个新的数组,使得内存占用为原来的两倍左右;
数据不一致:读操作不能读取实时性的数据,因为部分写操作的数据还未同步到读数组中
LinkedList
结构
基于双向链表实现,使用 Node 存储链表节点信息
每个链表存储了 first 和 last 指针
与ArrayList的比较
ArrayList 基于动态数组实现,LinkedList 基于双向链表实现。ArrayList 和 LinkedList 的区别可以归结为数组和链表的区别
数组支持随机访问,但插入删除的代价很高,需要移动大量元素;
链表不支持随机访问,但插入删除只需要改变指针
HashMap(JDK 1.7)
存储结构
内部包含了一个 Entry 类型的数组 table。
Entry 存储着键值对。它包含了四个字段,从 next 字段我们可以看出 Entry 是一个链表。
即数组中的每个位置被当成一个桶,一个桶存放一个链表
HashMap 使用拉链法来解决冲突,同一个链表中存放哈希值和散列桶取模运算结果相同的 Entry。
拉链法工作原理
新建一个 HashMap,默认大小为 16;
插入 <K1,V1> 键值对,先计算 K1 的 hashCode 为 115,使用除留余数法得到所在的桶下标 115%16=3
插入 <K2,V2> 键值对,先计算 K2 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6。
插入 <K3,V3> 键值对,先计算 K3 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6,插在 <K2,V2> 前面。
链表的插入是以头插法方式进行的,例如上面的 <K3,V3> 不是插在 <K2,V2> 后面,而是插入在链表头部。
查找分两步
计算键值对所在的桶
在链表上顺序查找,时间复杂度显然和链表的长度成正比
put操作
过程
首先调用key所在的类的hashcode,计算出key的哈希值,并在Entry数组中找到其存放的位置
位置为空
直接插入
位置不为空
比较哈希值,如果key的哈希值与所在的数据哈希值不同,头插法插入
比较哈希值,如果key的哈希值与所在的数据哈希值相同,调用equals()方法
equals()返回false,头插法插入
equals()返回true,覆盖原有的值
HashMap 允许插入键为 null 的键值对。但是因为无法调用 null 的 hashCode() 方法,也就无法确定该键值对的桶下标,只能通过强制指定一个桶下标来存放。HashMap 使用第 0 个桶存放键为 null 的键值对
确定桶下标
取模
令 x = 1<<4,即 x 为 2 的 4 次方,它具有以下性质
令一个数 y 与 x-1 做与运算,可以去除 y 位级表示的第 4 位以上数:
这个性质和 y 对 x 取模效果是一样的
位运算的代价比求模运算小的多,因此在进行这种计算时用位运算的话能带来更高的性能。
确定桶下标的最后一步是将 key 的 hash 值对桶个数取模:hash%capacity,如果能保证 capacity 为 2 的 n 次方,那么就可以将这个操作转换为位运算
扩容基本原理
设 HashMap 的 table 长度为 M,需要存储的键值对数量为 N,如果哈希函数满足均匀性的要求,那么每条链表的长度大约为 N/M,因此查找的复杂度为 O(N/M)。
为了让查找的成本降低,应该使 N/M 尽可能小,因此需要保证 M 尽可能大,也就是说 table 要尽可能大。HashMap 采用动态扩容来根据当前的 N 值来调整 M 值,使得空间效率和时间效率都能得到保证
扩容相关的参数主要
从下面的添加元素代码中可以看出,当需要扩容时,令 capacity 为原来的两倍
扩容使用 resize() 实现,需要注意的是,扩容操作同样需要把 oldTable 的所有键值对重新插入 newTable 中,因此这一步是很费时的
扩容重新计算桶下标
在进行扩容时,需要把键值对重新计算桶下标,从而放到对应的桶上。在前面提到,HashMap 使用 hash%capacity 来确定桶下标。HashMap capacity 为 2 的 n 次方这一特点能够极大降低重新计算桶下标操作的复杂度。
假设原数组长度 capacity 为 16,扩容之后 new capacity 为 32
对于一个 Key,它的哈希值 hash 在第 5 位
为 0,那么 hash%00010000 = hash%00100000,桶位置和原来一致
为 1,hash%00010000 = hash%00100000 + 16,桶位置是原位置 + 16
链表转红黑树
从 JDK 1.8 开始,一个桶存储的链表长度大于等于 8 时会将链表转换为红黑树
与HashTable比较
Hashtable 使用 synchronized 来进行同步
HashMap 可以插入键为 null 的 Entry
ConcurrentHashMap
存储结构
ConcurrentHashMap 和 HashMap 实现上类似,最主要的差别是 ConcurrentHashMap 采用了分段锁(Segment),每个分段锁维护着几个桶(HashEntry),多个线程可以同时访问不同分段锁上的桶,从而使其并发度更高(并发度就是 Segment 的个数)
Segment 继承自 ReentrantLock
默认的并发级别为 16,也就是说默认创建 16 个 Segment。
size操作
每个 Segment 维护了一个 count 变量来统计该 Segment 中的键值对个数
在执行 size 操作时,需要遍历所有 Segment 然后把 count 累计起来
ConcurrentHashMap 在执行 size 操作时先尝试不加锁,如果连续两次不加锁操作得到的结果一致,那么可以认为这个结果是正确的
尝试次数使用 RETRIES_BEFORE_LOCK 定义,该值为 2,retries 初始值为 -1,因此尝试次数为 3。
如果尝试的次数超过 3 次,就需要对每个 Segment 加锁
如果尝试的次数超过 3 次,就需要对每个 Segment 加锁
JDK 1.8的改动
JDK 1.7 使用分段锁机制来实现并发更新操作,核心类为 Segment,它继承自重入锁 ReentrantLock,并发度与 Segment 数量相等。
JDK 1.8 使用了 CAS 操作来支持更高的并发度,在 CAS 操作失败时使用内置锁 synchronized。
CAS(Compare-and-Swap),即比较并替换,是一种实现并发算法时常用到的技术
并且 JDK 1.8 的实现也在链表过长时会转换为红黑树。
LinkedHashMap
存储结构
继承自 HashMap,因此具有和 HashMap 一样的快速查找特性
内部维护了一个双向链表,用来维护插入顺序或者 LRU 顺序
accessOrder 决定了顺序,默认为 false,此时维护的是插入顺序。若为true,此时开启LRU访问顺序
LinkedHashMap 最重要的是以下用于维护顺序的函数,它们会在 put、get 等方法中调用
afterNodeAccess()
当一个节点被访问时,如果 accessOrder 为 true,则会将该节点移到链表尾部。也就是说指定为 LRU 顺序之后,在每次访问一个节点时,会将这个节点移到链表尾部,保证链表尾部是最近访问的节点,那么链表首部就是最近最久未使用的节点。
afterNodeInsertion()
在 put 等操作之后执行,当 removeEldestEntry() 方法返回 true 时会移除最晚的节点,也就是链表首部节点 first。
evict 只有在构建 Map 的时候才为 false,在这里为 true。
removeEldestEntry() 默认为 false,如果需要让它为 true,需要继承 LinkedHashMap 并且覆盖这个方法的实现,这在实现 LRU 的缓存中特别有用,通过移除最近最久未使用的节点,从而保证缓存空间足够,并且缓存的数据都是热点数据。
LRU缓存
以下是使用 LinkedHashMap 实现的一个 LRU 缓存
设定最大缓存空间 MAX_ENTRIES 为 3;
使用 LinkedHashMap 的构造函数将 accessOrder 设置为 true,开启 LRU 顺序
覆盖 removeEldestEntry() 方法实现,在节点多于 MAX_ENTRIES 就会将最近最久未使用的数据移除。
WeakHashMap
存储结构
WeakHashMap 的 Entry 继承自 WeakReference,被 WeakReference 关联的对象在下一次垃圾回收时会被回收。
WeakHashMap 主要用来实现缓存,通过使用 WeakHashMap 来引用缓存对象,由 JVM 对这部分缓存进行回收。
ConcurrentCache
Tomcat 中的 ConcurrentCache 使用了 WeakHashMap 来实现缓存功能
ConcurrentCache 采取的是分代缓存
经常使用的对象放入 eden 中,eden 使用 ConcurrentHashMap 实现,不用担心会被回收(伊甸园)
不常用的对象放入 longterm,longterm 使用 WeakHashMap 实现,这些老对象会被垃圾收集器回收。
当调用 get() 方法时,会先从 eden 区获取,如果没有找到的话再到 longterm 获取,当从 longterm 获取到就把对象放入 eden 中,从而保证经常被访问的节点不容易被回收。
当调用 put() 方法时,如果 eden 的大小超过了 size,那么就将 eden 中的所有对象都放入 longterm 中,利用虚拟机回收掉一部分不经常使用的对象。
Java IO
概述
流的媒介原理
分类
磁盘操作:File
字节操作:InputStream 和 OutputStream
字符操作:Reader 和 Writer
对象操作:Serializable
网络操作:Socket
新的输入/输出:NIO
磁盘操作
File 类可以用于表示文件和目录的信息,但是它不表示文件的内容
从 Java7 开始,可以使用 Paths 和 Files 代替 File
字节操作
实现文件复制
装饰着模式
Java I/O 使用了装饰者模式来实现。以 InputStream 为例
InputStream 是抽象组件
FileInputStream 是 InputStream 的子类,属于具体组件,提供了字节流的输入操作
FilterInputStream 属于抽象装饰者,装饰者用于装饰组件,为组件提供额外的功能。例如 BufferedInputStream 为 FileInputStream 提供缓存的功能。
实例化一个具有缓存功能的字节流对象时,只需要在 FileInputStream 对象上再套一层 BufferedInputStream 对象即可
字符操作
编码与解码
编码就是把字符转换为字节,而解码是把字节重新组合成字符
如果编码和解码过程使用不同的编码方式那么就出现了乱码
常见编码
GBK 编码中,中文字符占 2 个字节,英文字符占 1 个字节
UTF-8 编码中,中文字符占 3 个字节,英文字符占 1 个字节
UTF-16be 编码中,中文字符和英文字符都占 2 个字节
Java 的内存编码使用双字节编码 UTF-16be,这不是指 Java 只支持这一种编码方式,而是说 char 这种类型使用 UTF-16be 进行编码。char 类型占 16 位,也就是两个字节,Java 使用这种双字节编码是为了让一个中文或者一个英文都能使用一个 char 来存储
String编码方式
String 可以看成一个字符序列,可以指定一个编码方式将它编码为字节序列,也可以指定一个编码方式将一个字节序列解码为 String。
在调用无参数 getBytes() 方法时,默认的编码方式不是 UTF-16be。双字节编码的好处是可以使用一个 char 存储中文和英文,而将 String 转为 bytes[] 字节数组就不再需要这个好处,因此也就不再需要双字节编码。getBytes() 的默认编码方式与平台有关,一般为 UTF-8
Reader 与 Writer
不管是磁盘还是网络传输,最小的存储单元都是字节,而不是字符。但是在程序中操作的通常是字符形式的数据,因此需要提供对字符进行操作的方法。
分类
InputStreamReader 实现从字节流解码成字符流
可以指定编码格式,实现字符的转换
OutputStreamWriter 实现字符流编码成为字节流。
实现逐行输出文本文件的内容
对象操作
序列化
序列化就是将一个对象转换成字节序列,方便存储和传输
方法
序列化:ObjectOutputStream.writeObject()
反序列化:ObjectInputStream.readObject()
不会对静态变量进行序列化,因为序列化只是保存对象的状态,静态变量属于类的状态。
Serializable
序列化的类需要实现 Serializable 接口,它只是一个标准,没有任何方法需要实现,但是如果不去实现它的话而进行序列化,会抛出异常。
transient
transient 关键字可以使一些属性不会被序列化
ArrayList 中存储数据的数组 elementData 是用 transient 修饰的,因为这个数组是动态扩展的,并不是所有的空间都被使用,因此就不需要所有的内容都被序列化。通过重写序列化和反序列化方法,使得可以只序列化数组中有内容的那部分数据
网络操作
Java中的网络支持
InetAddress
用于表示网络上的硬件资源,即 IP 地址
没有公有的构造函数,只能通过静态方法来创建实例
URL
统一资源定位符
可以直接从 URL 中读取字节流数据
Sockets
使用 TCP 协议实现网络通信
两种
ServerSocket:服务器端类
Socket:客户端类
服务器和客户端通过 InputStream 和 OutputStream 进行输入输出
Datagram
使用 UDP 协议实现网络通信
两种
DatagramSocket:通信类
DatagramPacket:数据包类
NIO
新的输入/输出 (NIO) 库是在 JDK 1.4 中引入的,弥补了原来的 I/O 的不足,提供了高速的、面向块的 I/O。
流与块
I/O 与 NIO 最重要的区别是数据打包和传输的方式,I/O 以流的方式处理数据,而 NIO 以块的方式处理数据。
面向流的 I/O 一次处理一个字节数据:一个输入流产生一个字节数据,一个输出流消费一个字节数据。为流式数据创建过滤器非常容易,链接几个过滤器,以便每个过滤器只负责复杂处理机制的一部分。不利的一面是,面向流的 I/O 通常相当慢
通道与缓冲区
通道
通道 Channel 是对原 I/O 包中的流的模拟,可以通过它读取和写入数据
通道与流的不同之处在于,流只能在一个方向上移动(一个流必须是 InputStream 或者 OutputStream 的子类),而通道是双向的,可以用于读、写或者同时用于读写。
类型
FileChannel:从文件中读写数据;
DatagramChannel:通过 UDP 读写网络中数据;
SocketChannel:通过 TCP 读写网络中数据;
ServerSocketChannel:可以监听新进来的 TCP 连接,对每一个新进来的连接都会创建一个 SocketChannel。
缓冲区
发送给一个通道的所有数据都必须首先放到缓冲区中,同样地,从通道中读取的任何数据都要先读到缓冲区中。也就是说,不会直接对通道进行读写数据,而是要先经过缓冲区。
类型
ByteBuffer
CharBuffer
ShortBuffer
IntBuffer
LongBuffer
FloatBuffer
DoubleBuffer
缓冲区状态变量
三个
capacity:最大容量;
position:当前已经读写的字节数;
limit:还可以读写的字节数。
状态变量改变的过程
① 新建一个大小为 8 个字节的缓冲区,此时 position 为 0,而 limit = capacity = 8。capacity 变量不会改变,下面的讨论会忽略它。
② 从输入通道中读取 5 个字节数据写入缓冲区中,此时 position 为 5,limit 保持不变
③ 在将缓冲区的数据写到输出通道之前,需要先调用 flip() 方法,这个方法将 limit 设置为当前 position,并将 position 设置为 0。
④ 从缓冲区中取 4 个字节到输出缓冲中,此时 position 设为 4
⑤ 最后需要调用 clear() 方法来清空缓冲区,此时 position 和 limit 都被设置为最初位置。
文件 NIO 实例
使用 NIO 快速复制文件
选择器
NIO 实现了 IO 多路复用中的 Reactor 模型,一个线程 Thread 使用一个选择器 Selector 通过轮询的方式去监听多个通道 Channel 上的事件,从而让一个线程就可以处理多个事件
通过配置监听的通道 Channel 为非阻塞,那么当 Channel 上的 IO 事件还未到达时,就不会进入阻塞状态一直等待,而是继续轮询其它 Channel,找到 IO 事件已经到达的 Channel 执行。
因为创建和切换线程的开销很大,因此使用一个线程来处理多个事件而不是一个线程处理一个事件,对于 IO 密集型的应用具有很好地性能。
步骤
1、创建选择器
2、将通道注册到选择器上
通道必须配置为非阻塞模式,否则使用选择器就没有任何意义了,因为如果通道在某个事件上被阻塞,那么服务器就不能响应其它事件,必须等待这个事件处理完毕才能去处理其它事件,显然这和选择器的作用背道而驰。
在将通道注册到选择器上时,还需要指定要注册的具体事件
SelectionKey.OP_CONNECT
SelectionKey.OP_ACCEPT
SelectionKey.OP_READ
SelectionKey.OP_WRITE
3、监听事件
使用 select() 来监听到达的事件,它会一直阻塞直到有至少一个事件到达。
4、获取到达的事件
5、事件循环
因为一次 select() 调用不能处理完所有的事件,并且服务器端有可能需要一直监听事件,因此服务器端处理事件的代码一般会放在一个死循环内。
套接字NIO实例
对比
NIO 与普通 I/O 的区别主要有以下两点
NIO 是非阻塞的
NIO 面向块,I/O 面向流
Java 并发
线程的使用
四种
实现Runnable接口
实现Callable接口
与 Runnable 相比,Callable 可以有返回值,返回值通过 FutureTask 进行封装。
继承Thread
使用线程池
实现 Runnable 和 Callable 接口的类只能当做一个可以在线程中运行的任务,不是真正意义上的线程,因此最后还需要通过 Thread 来调用。可以理解为任务是通过线程驱动从而执行的。
实现接口和继承Thead比较
实现接口比较好,Java不支持多继承
基础线程机制
Executor
Executor 管理多个异步任务的执行,而无需程序员显式地管理线程的生命周期。这里的异步是指多个任务的执行互不干扰,不需要进行同步操作
三种
CachedThreadPool
一个任务创建一个线程
FixedThreadPool
所有任务只能使用固定大小的线程
SingleThreadExecutor
相当于大小为1的FixedThreadPool
Daemon
守护线程是程序运行时在后台提供服务的线程,不属于程序中不可或缺的部分
当所有非守护线程结束时,程序也就终止,同时会杀死所有守护线程。
main() 属于非守护线程。
在线程启动之前使用 setDaemon() 方法可以将一个线程设置为守护线程
sleep()
Thread.sleep(millisec) 方法会休眠当前正在执行的线程,millisec 单位为毫秒。
sleep() 可能会抛出 InterruptedException,因为异常不能跨线程传播回 main() 中,因此必须在本地进行处理。线程中抛出的其它异常也同样需要在本地进行处理。
yield()
对静态方法 Thread.yield() 的调用声明了当前线程已经完成了生命周期中最重要的部分,可以切换给其它线程来执行。该方法只是对线程调度器的一个建议,而且也只是建议具有相同优先级的其它线程可以运行。
中断
一个线程执行完毕之后会自动结束,如果在运行过程中发生异常也会提前结束
InterruptedException
通过调用一个线程的 interrupt() 来中断该线程,如果该线程处于阻塞、限期等待或者无限期等待状态,那么就会抛出 InterruptedException,从而提前结束该线程。但是不能中断 I/O 阻塞和 synchronized 锁阻塞。
对于以下代码,在 main() 中启动一个线程之后再中断它,由于线程中调用了 Thread.sleep() 方法,因此会抛出一个 InterruptedException,从而提前结束线程,不执行之后的语句
interrupted()
如果一个线程的 run() 方法执行一个无限循环,并且没有执行 sleep() 等会抛出 InterruptedException 的操作,那么调用线程的 interrupt() 方法就无法使线程提前结束
但是调用 interrupt() 方法会设置线程的中断标记,此时调用 interrupted() 方法会返回 true。因此可以在循环体中使用 interrupted() 方法来判断线程是否处于中断状态,从而提前结束线程。
Executor的中断操作
shutdown只是将线程池的状态设置为SHUTWDOWN状态,正在执行的任务会继续执行下去,没有被执行的则中断。而shutdownNow则是将线程池的状态设置为STOP,正在执行的任务则被停止,没被执行任务的则返回。
如果只想中断 Executor 中的一个线程,可以通过使用 submit() 方法来提交一个线程,它会返回一个 Future<?> 对象,通过调用该对象的 cancel(true) 方法就可以中断线程。
互斥同步
Java 提供了两种锁机制来控制多个线程对共享资源的互斥访问,第一个是 JVM 实现的 synchronized,而另一个是 JDK 实现的 ReentrantLock。
synchronized
1、同步一个代码块
它只作用于同一个对象,如果调用两个对象上的同步代码块,就不会进行同步。
对于以下代码,使用 ExecutorService 执行了两个线程,由于调用的是同一个对象的同步代码块,因此这两个线程会进行同步,当一个线程进入同步语句块时,另一个线程就必须等待
对于以下代码,两个线程调用了不同对象的同步代码块,因此这两个线程就不需要同步。从输出结果可以看出,两个线程交叉执行。
2、同步一个方法
它和同步代码块一样,作用于同一个对象
3、同步一个静态方法
作用于整个类
4、同步一个类
作用于整个类,也就是说两个线程调用同一个类的不同对象上的这种同步语句,也会进行同步。
ReentrantLock
ReentrantLock 是 java.util.concurrent(J.U.C)包中的锁
比较
相同点:都解决线程安全问题
不同点:synchronized机制在执行完相应的同步代码以后,自动的释放同步监视器
* Lock需要手动的启动同步(lock()),同时结束同步也需要手动的实现(unlock())
* Lock需要手动的启动同步(lock()),同时结束同步也需要手动的实现(unlock())
使用选择
除非需要使用 ReentrantLock 的高级功能,否则优先使用 synchronized。这是因为 synchronized 是 JVM 实现的一种锁机制,JVM 原生地支持它,而 ReentrantLock 不是所有的 JDK 版本都支持。并且使用 synchronized 不用担心没有释放锁而导致死锁问题,因为 JVM 会确保锁的释放。
线程的通信和协作
join()
在线程中调用另一个线程的 join() 方法,会将当前线程挂起,而不是忙等待,直到目标线程结束。
对于以下代码,虽然 b 线程先启动,但是因为在 b 线程中调用了 a 线程的 join() 方法,b 线程会等待 a 线程结束才继续执行,因此最后能够保证 a 线程的输出先于 b 线程的输出。
wait() notify() notifyAll()
调用 wait() 使得线程等待某个条件满足,线程在等待时会被挂起,当其他线程的运行使得这个条件满足时,其它线程会调用 notify() 或者 notifyAll() 来唤醒挂起的线程。
它们都属于 Object 的一部分,而不属于 Thread。
只能用在同步方法或者同步控制块中使用,否则会在运行时抛出 IllegalMonitorStateException。
使用 wait() 挂起期间,线程会释放锁。这是因为,如果没有释放锁,那么其它线程就无法进入对象的同步方法或者同步控制块中,那么就无法执行 notify() 或者 notifyAll() 来唤醒挂起的线程,造成死锁。
wait()和sleep()的区别
wait() 是 Object 的方法,而 sleep() 是 Thread 的静态方法
wait() 会释放锁,sleep() 不会
sleep()可以在任何需要的场景下调用。 wait()必须使用在同步代码块或同步方法中
await() signal() signalAll()
java.util.concurrent 类库中提供了 Condition 类来实现线程之间的协调,可以在 Condition 上调用 await() 方法使线程等待,其它线程调用 signal() 或 signalAll() 方法唤醒等待的线程。
相比于 wait() 这种等待方式,await() 可以指定等待的条件,因此更加灵活。
使用 Lock 来获取一个 Condition 对象。
线程的生命周期
J.U.C-AQS
AbstractQueuedSynchronizer,抽象队列同步器
AQS的底层原理
CountDownLatch
用来控制一个线程或者多个线程等待多个线程
让一些线程阻塞直到另一些线程完成一系列操作后才被唤醒
维护了一个计数器 cnt,每次调用 countDown() 方法会让计数器的值减 1,减到 0 的时候,那些因为调用 await() 方法而在等待的线程就会被唤醒。
CyclicBarrier
用来控制多个线程互相等待,只有当多个线程都到达时,这些线程才会继续执行
CyclicBarrier 的字面意思是可循环(Cyclic)使用的屏障(Barrier),它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活,线程进入屏障通过 CyclicBarrier 的 await() 方法。
和 CountdownLatch 相似,都是通过维护计数器来实现的。线程执行 await() 方法之后计数器会减 1,并进行等待,直到计数器为 0,所有调用 await() 方法而在等待的线程才能继续执行。
CyclicBarrier 和 CountdownLatch 的一个区别是,CyclicBarrier 的计数器通过调用 reset() 方法可以循环使用,所以它才叫做循环屏障。
Semaphore
Semaphore 类似于操作系统中的信号量,可以控制对互斥资源的访问线程数
以下代码模拟了对某个服务的并发请求,每次只能有 3 个客户端同时访问,请求总数为 10
J.U.C-其他组件
FutureTask
在介绍 Callable 时我们知道它可以有返回值,返回值通过 Future 进行封装。FutureTask 实现了 RunnableFuture 接口,该接口继承自 Runnable 和 Future 接口,这使得 FutureTask 既可以当做一个任务执行,也可以有返回值。
FutureTask 可用于异步获取执行结果或取消执行任务的场景。当一个计算任务需要执行很长时间,那么就可以用 FutureTask 来封装这个任务,主线程在完成自己的任务之后再去获取结果
BlockingQueue
java.util.concurrent.BlockingQueue 接口有以下阻塞队列的实现
FIFO 队列 :LinkedBlockingQueue、ArrayBlockingQueue(固定长度)
优先级队列 :PriorityBlockingQueue
提供了阻塞的 take() 和 put() 方法:如果队列为空 take() 将阻塞,直到队列中有内容;如果队列为满 put() 将阻塞,直到队列有空闲位置。
使用 BlockingQueue 实现生产者消费者问题
ForkJoin
Java 内存模型
主内存和工作内存
处理器上的寄存器的读写的速度比内存快几个数量级,为了解决这种速度矛盾,在它们之间加入了高速缓存。
加入高速缓存带来了一个新的问题:缓存一致性。如果多个缓存共享同一块主内存区域,那么多个缓存的数据可能会不一致,需要一些协议来解决这个问题。
所有的变量都存储在主内存中,每个线程还有自己的工作内存,工作内存存储在高速缓存或者寄存器中,保存了该线程使用的变量是主内存副本拷贝
线程只能直接操作工作内存中的变量,不同线程之间的变量值传递需要通过主内存来完成
内存之间的交互操作
8 个操作来完成主内存和工作内存的交互操作
read:把一个变量的值从主内存传输到工作内存中
load:在 read 之后执行,把 read 得到的值放入工作内存的变量副本中
use:把工作内存中一个变量的值传递给执行引擎
assign:把一个从执行引擎接收到的值赋给工作内存的变量
store:把工作内存的一个变量的值传送到主内存中
write:在 store 之后执行,把 store 得到的值放入主内存的变量中
lock:作用于主内存的变量
unlock:作用于主内存的变量
三大特性
原子性
可见性
可见性指当一个线程修改了共享变量的值,其它线程能够立即得知这个修改。Java 内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值来实现可见性的
三种实现方式
volatile
三大特性
可见性
不保证原子性
禁止指令重排
synchronized
对一个变量执行 unlock 操作之前,必须把变量值同步回主内存
final,被 final 关键字修饰的字段在构造器中一旦初始化完成,并且没有发生 this 逃逸(其它线程通过 this 引用访问到初始化了一半的对象),那么其它线程就能看见 final 字段的值。
有序性
线程安全
互斥同步
Synchronized和ReentrantLock
非阻塞同步
概述
互斥同步最主要的问题就是线程阻塞和唤醒所带来的性能问题,因此这种同步也称为阻塞同步
互斥同步属于一种悲观的并发策略,总是认为只要不去做正确的同步措施,那就肯定会出现问题。无论共享数据是否真的会出现竞争,它都要进行加锁
随着硬件指令集的发展,我们可以使用基于冲突检测的乐观并发策略:先进行操作,如果没有其它线程争用共享数据,那操作就成功了,否则采取补偿措施(不断地重试,直到成功为止)。这种乐观的并发策略的许多实现都不需要将线程阻塞,因此这种同步操作称为非阻塞同步。
CAS
线程安全的
AutomicInteger
J.U.C 包里面的整数原子类 AtomicInteger 的方法调用了 Unsafe 类的 CAS 操作
ABA
如果一个变量初次读取的时候是 A 值,它的值被改成了 B,后来又被改回为 A,那 CAS 操作就会误认为它从来没有被改变过。
J.U.C 包提供了一个带有标记的原子引用类 AtomicStampedReference 来解决这个问题,它可以通过控制变量值的版本来保证 CAS 的正确性。大部分情况下 ABA 问题不会影响程序并发的正确性,如果需要解决 ABA 问题,改用传统的互斥同步可能会比原子类更高效。
不可变
无同步方案
要保证线程安全,并不是一定就要进行同步。如果一个方法本来就不涉及共享数据,那它自然就无须任何同步措施去保证正确性。
1、栈封闭
多个线程访问同一个方法的局部变量时,不会出现线程安全问题,因为局部变量存储在虚拟机栈中,属于线程私有的。
2、线程本地存储
如果一段代码中所需要的数据必须与其他代码共享,那就看看这些共享数据的代码是否能保证在同一个线程中执行。如果能保证,我们就可以把共享数据的可见范围限制在同一个线程之内,这样,无须同步也能保证线程之间不出现数据争用的问题。
符合这种特点的应用并不少见,大部分使用消费队列的架构模式(如“生产者-消费者”模式)都会将产品的消费过程尽量在一个线程中消费完。其中最重要的一个应用实例就是经典 Web 交互模型中的“一个请求对应一个服务器线程”(Thread-per-Request)的处理方式,这种处理方式的广泛应用使得很多 Web 服务端应用都可以使用线程本地存储来解决线程安全问题。
可以使用 java.lang.ThreadLocal 类来实现线程本地存储功能
对于以下代码,thread1 中设置 threadLocal 为 1,而 thread2 设置 threadLocal 为 2。过了一段时间之后,thread1 读取 threadLocal 依然是 1,不受 thread2 的影响。
每个 Thread 都有一个 ThreadLocal.ThreadLocalMap 对象
当调用一个 ThreadLocal 的 set(T value) 方法时,先得到当前线程的 ThreadLocalMap 对象,然后将 ThreadLocal->value 键值对插入到该 Map 中
在一些场景 (尤其是使用线程池) 下,由于 ThreadLocal.ThreadLocalMap 的底层数据结构导致 ThreadLocal 有内存泄漏的情况,应该尽可能在每次使用 ThreadLocal 后手动调用 remove(),以避免出现 ThreadLocal 经典的内存泄漏甚至是造成自身业务混乱的风险。
0 条评论
下一页