b+tree
2020-10-22 11:01:58 3 举报
mysql b+tree
作者其他创作
大纲/内容
data
28
3
data
36
键值,表中记录主键
磁盘块1
60
10
通常在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对B+Tree进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。可能上面例子中只有22条数据记录,看不出B+Tree的优点,下面做一个推算:InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值(因为是估值,为方便计算,这里的K取值为〖10〗^3)。也就是说一个深度为3的B+Tree索引可以维护10^3 * 10^3 * 10^3 = 10亿 条记录。实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree的高度一般都在2~4层。mysql的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1~3次磁盘I/O操作。数据库中的B+Tree索引可以分为聚集索引(clustered index)和辅助索引(secondary index)。上面的B+Tree示例图在数据库中的实现即为聚集索引,聚集索引的B+Tree中的叶子节点存放的是整张表的行记录数据。辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键。当通过辅助索引来查询数据时,InnoDB存储引擎会遍历辅助索引找到主键,然后再通过主键在聚集索引中找到完整的行记录数据。
数据,表中记录除主键外的数据
75
35
磁盘块2
79
15
26
p2
磁盘块7
磁盘块9
p3
磁盘块4
12
磁盘块5
磁盘块8
5
9
65
p1
指针,存储叶子节点地址信息
13
17
磁盘块3
99
磁盘块6
90
29
B+Tree特点:非叶子节点只存储键值信息。所有叶子节点之间都有一个链指针。数据记录都存放在叶子节点中。
30
87
0 条评论
下一页