生物体内的物质运输
2021-07-18 21:44:50 0 举报
AI智能生成
生物体内的物质运输
作者其他创作
大纲/内容
植物体内的物质运输
生物原理
植物生命活动中所需的多种物质是由其组成部分(器官、组织等)分别吸收和合成的。因此,植物体内各部分间必须有物质的相互交换,才能维持整体的生存。细胞是植物体各部分的构成单位,是外面由膜包围的相对独立的系统。物质交换可以通过细胞膜的转移和细胞间的运输进行。高等植物由于具有由根、茎、叶所组成的高大躯体,单靠细胞间物质运输不足以应付不同器官间的物质交换,它们在进化中发展形成输送效率较高的通道维管系统,以进行体内的长距离运输。
物质通过细胞膜的转移细胞膜由脂类物质组成,中间镶嵌有少量蛋白质类物质,还有许多小孔。膜不仅使细胞内含物与外界分开,从而保持了自身成分的特点和稳定性,而且也是细胞内外进行有选择的物质交换的通道。高分子颗粒以及带有电荷的亲水性强的分子通常都难于通过细胞膜。
物质通过细胞膜的转移细胞膜由脂类物质组成,中间镶嵌有少量蛋白质类物质,还有许多小孔。膜不仅使细胞内含物与外界分开,从而保持了自身成分的特点和稳定性,而且也是细胞内外进行有选择的物质交换的通道。高分子颗粒以及带有电荷的亲水性强的分子通常都难于通过细胞膜。
运动分类
被动转移
能溶于脂肪的小分子则可沿胞内外的浓度差,靠扩散透过胞膜出入细胞。在扩散中,物质由高浓度一侧向低浓度一侧的流动不需代谢能推动,称为被动转移。
能溶于脂肪的小分子则可沿胞内外的浓度差,靠扩散透过胞膜出入细胞。在扩散中,物质由高浓度一侧向低浓度一侧的流动不需代谢能推动,称为被动转移。
主动转移
然而有些物质如K+离子、糖分子,在细胞内的含量可以超过外界很多倍,它们却依然可以从外界通过胞膜吸收到细胞内。这种逆浓淡梯度的分子转移需要消耗细胞的代谢能,故称为主动转移。在主动转移中,分子先同在膜上的特异载体发生临时结合形成复合体,随后由复合体从膜外移入膜内。载体把该分子卸下后,又可重新转到膜外接受新的被载运物质。
然而有些物质如K+离子、糖分子,在细胞内的含量可以超过外界很多倍,它们却依然可以从外界通过胞膜吸收到细胞内。这种逆浓淡梯度的分子转移需要消耗细胞的代谢能,故称为主动转移。在主动转移中,分子先同在膜上的特异载体发生临时结合形成复合体,随后由复合体从膜外移入膜内。载体把该分子卸下后,又可重新转到膜外接受新的被载运物质。
入胞作用
胞膜接触到物质颗粒时在接触处发生内陷,外口封闭形成小囊泡,向胞内移动而把颗粒带入,称为入胞作用。
胞膜接触到物质颗粒时在接触处发生内陷,外口封闭形成小囊泡,向胞内移动而把颗粒带入,称为入胞作用。
出胞作用
细胞内部由于内质网与网体的合成活动也可形成充满特殊汁液的囊泡;当囊泡转移到泡膜时,囊泡膜能融合在胞膜内而将其内含物送出胞外,称为出胞作用。胞壁在胞膜外围的加厚和腺细胞的向外分泌等主要就是由出胞作用来实现的。
细胞内部由于内质网与网体的合成活动也可形成充满特殊汁液的囊泡;当囊泡转移到泡膜时,囊泡膜能融合在胞膜内而将其内含物送出胞外,称为出胞作用。胞壁在胞膜外围的加厚和腺细胞的向外分泌等主要就是由出胞作用来实现的。
共质体
植物细胞与动物细胞的区别之一是细胞的原生质体外面存在细胞壁。许多细胞的细胞壁互相粘连,构成一个连续骨架,统称为质外体。细胞壁之间有相互串通的空隙,是细胞间交换气体、运输水分和无机养料的通道。另外,细胞与细胞的原生质之间还有许多纤丝或称胞间连丝沟通,将邻接细胞的原生质相互贯穿,也构成一个与质外体相互交错的连续体系,称为共质体。它们所占的面积虽然有限,但细胞累积的一些溶质由此通过它们在细胞间转移时,无需再穿越邻接的细胞质膜,因而是电解质和有机质在细胞间运输最为有效的通道。
运输特性
高等植物器官间物质的长距离运输在维管系统中进行。水分、矿质元素和有机物质各有其主要的运输通道,如导管、筛管等。水分和矿质元素主要由木质部的导管运输。导管由一连串已失去原生质和细胞壁端壁的细胞空腔连接而成,是质外体的主要组成部分。根系从土壤中吸收水分和矿质元素以后,靠根压和由于叶片蒸腾失水而造成的蒸腾拉力将其运送至地上部分。导管空腔口径较大,因而对液流的阻力小,蒸腾流的速度可以高达每小时几十米。有机物质主要由韧皮部的筛管从有机物质的“源”向“库”运输。“源”通常指能进行光合作用的叶片;“库”指消耗光合产物的器官,包括正在生长中的营养体的尖端以及正在形成中的果实、块茎等。组成筛管的细胞内尚有原生质存在,端壁则特化为具有筛孔的筛板。筛孔内时常有一些纤丝结构(P-蛋白)。有机物质经由筛孔的纤丝结构运送时,阻力较大,除靠“源”与“库”两端间的膨压差推动外,还可能需要输导组织附近活细胞的中间推动作用。筛管运输速度远低于导管,每小时仅几十厘米。一个器官是“源”还是“库”,随植物生长发育的情况而变。如叶片衰老时,光合功能渐趋微弱,将细胞内含物降解输出至其他新生部位后,不再能合成新的有机物质,“源”的作用就逐渐消失。种子在形成期是消耗有机物的“库”,到了萌发期就成为供应有机物的“源”。稻麦子粒在成熟后期,不仅调运营养体当时的同化产物,甚至会动员营养体长期积累的细胞内含物使之降解并向子粒集中。人工调节繁殖器官与营养器官之间的源、库关系,可对作物产量发生重要影响。除了维管系统外,不少高等植物如橡胶树还有乳管系统,乳汁在其中转移。
一方面是质外体和导管,另一方面是共质体和筛管,构成了植物体内物质运输途径的两大网络,分别承担水分、矿物质和有机物质的运输。但二者之间并不完全隔离。根部从土壤中吸收的水分和无机离子经由质外体向根的木质部进行横向运输时,由于内皮层有凯氏带的阻碍,常要经过共质体,才能抵达导管。相反,叶肉细胞的光合产物除主要通过共质体外,也部分通过质外体移向筛管。
另外,在维管束中的导管和筛管之间,还掺杂着机械组织和包括形成层、转移细胞和伴胞等在内的多种薄壁组织。被运输的物质还常通过这些组织,从一个系统向另一个系统转移。因而不同的运输途径常交错发挥运输作用。植物体内的纵向运输的阻力比横向运输的阻力小。叶的光合产物一般主要供应同侧器官。只有当纵向运输受阻时,横向运输才加强。
一方面是质外体和导管,另一方面是共质体和筛管,构成了植物体内物质运输途径的两大网络,分别承担水分、矿物质和有机物质的运输。但二者之间并不完全隔离。根部从土壤中吸收的水分和无机离子经由质外体向根的木质部进行横向运输时,由于内皮层有凯氏带的阻碍,常要经过共质体,才能抵达导管。相反,叶肉细胞的光合产物除主要通过共质体外,也部分通过质外体移向筛管。
另外,在维管束中的导管和筛管之间,还掺杂着机械组织和包括形成层、转移细胞和伴胞等在内的多种薄壁组织。被运输的物质还常通过这些组织,从一个系统向另一个系统转移。因而不同的运输途径常交错发挥运输作用。植物体内的纵向运输的阻力比横向运输的阻力小。叶的光合产物一般主要供应同侧器官。只有当纵向运输受阻时,横向运输才加强。
运输途径
导管
导管是由什么构成的
导管是由一种死亡了的,由只有细胞壁(退化)的细胞构成的
导管的特性
上下两个细胞是贯通的(竖向细胞壁退化)
组织分类
输导组织
作用
把从根部吸收的水和无机盐输送到植株身体各处
构成导管的细胞的发育过程
导管分子在发育初期是活的细胞,成熟后,原生质体解体,细胞死亡
筛管
什么是筛管
筛管,细胞生物学名词,指高等植物韧皮部中的管状结构。
构成
它由筛分子组成
发育过程
早期
筛管分子在发育早期,含有细胞核和液泡,浓厚的细胞质中含有线粒体、高尔基体、内质网、质体、和特殊的黏液体。黏液体是筛管分子所特有的具有一定超微结构的蛋白质,称为P-蛋白质
发育成熟的过程中
在筛管分子发育成熟的过程中,一方面,细胞核逐渐解体,液泡膜破坏,筛管分子失去了生长、转化和分裂的能力;另一方面,选择性的自溶物质导致了核糖体、高尔基体、微管和微丝的消失,只保留了与物质运输的维持生活直接有关的细胞器,如贮藏蛋白质或淀粉功能的质体,以及可以保证筛管分子中物质运输对能量需要的线粒体。但这些质体和线粒体的内部结构也稍有消退。此外,P-蛋白质也由原来分散状态而趋集与细胞腔的侧面和筛孔附近
成熟后
成熟的筛管分子成为特殊的无核细胞,在相当长的时间里仍保持活力。后来,沿着筛孔的四周,围绕联络索而积累胼胝质。胼胝质是一种糖类,水解时产生葡萄糖和糖醛酸,它们在筛孔之间的端壁上逐渐积累加厚,联络索则相应变细。当筛管分子进入休眠或衰亡时,胼胝质已称为垫伏沉积在整个筛板上,称为胼胝体。只是暂时处于休眠状态的筛管分子,在次年春季来临时再行恢复活动,胼胝体消溶,联络索重新出现。一般植物的筛管输导组织只有一个生长季,少数植物,如葡萄,椴的筛管可保持至二至多年。筛管分子衰亡后输导功能不再恢复,继而被新的具有活力的筛管分子代替
伴胞
筛管分子的旁侧有一至多个狭长的伴胞。伴胞与筛管分子是由同一个母细胞经过不均等纵裂而来的,其中较小的一个子细胞形成伴胞。有丰富的细胞器和膜系统,高尔基体、线粒体、粗面内质网和质体都较多,细胞质密度也较大,它们位于筛管分子与叶肉之间,能更高效的传递光合产物。当筛管分子衰老死亡时,伴胞也随之失去功能而死亡。
功能
成熟后的筛细胞会损失掉大部分细胞器,只能由旁边的伴胞提供营养。筛分子和伴胞来源于同一筛母细胞。筛管分子顶端相互连接,胞壁之间穿孔,形成筛板。联络索通过筛板孔上下贯穿,以调节运输。筛管和伴胞为被子植物主要的输导有机物的管道。
动物体内的物质运输
动物
循环系统
人类
心血管系统,神经系统,内分泌系统,淋巴系统
心血管系统
心脏和血管构成血液运输的网络——心血管系统。通过该系统将血液泵入身体的大血管系统,血液将养分和氧气运送至细胞,并带走细胞代谢产生的废物。体内有3种血管:动脉、静脉和毛细血管。在压力的作用下,血液离开心脏,并通过动脉的分支系统运输到全身。最后一级动脉——微动脉——将含氧量丰富的血液运送至毛细血管。氧气、养分、代谢产生的废物及细胞外液中的其他物质在由毛细血管构成的毛细血管床中进行交换。血液再经毛细血管床进入类似毛细血管的薄壁微静脉。微静脉的血汇入小静脉,小静脉再汇入较大的静脉,最后由大静脉——腔静脉把含氧量较低的血液又运回心脏。在神经体液调节下,血液沿心血管系统循环不息。根据循环途径不同,可分为大(体)循环和小(肺)循环两种。大循环(体循环):血液由左心室搏出,经主动脉及其分支到达全身毛细血管,血液在此与周围的组织、细胞进行物质和气体交换,再通过各级静脉,最后经上、下腔静脉及心冠状窦返回右心房。小循环(肺循环):血液由右心室搏出,经肺动脉干及其各级分支到达肺泡毛细血管进行气体交换,再经肺静脉进入左心室。体循环和肺循环同时进行。体循环的路程长,流经范围广,以动脉血滋养全身各部,并将全身各部的代谢产物和二氧化碳运回心脏。肺循环路程较短,只通过肺,主要使静脉血转变为氧饱和的动脉血。
心脏
心脏是血管系的动力器官,位于胸腔内、两肺之间,像个前后略扁的圆锥体。心脏分为左、右心房和左、右心室4个腔。房中隔和室中隔把心脏分为左、右两半,每半又由房室口及周围的瓣膜分为上部的心房和下部的心室。左心房接受左右肺的血液,属动脉血。左心室接受左心房的血液,收缩时把血液压入主动脉,推动大循环。右心房接受全身流回心脏的静脉血,收缩时把血液压入右心室。右心室收缩时再把血液压入肺动脉。由此可见,心脏是个泵血器官。而心输出量(每分钟心脏所射出的血量)又是泵血功能的重要指标。健康成人安静时平均心跳为每分钟75次,计算心输出量51左右。剧烈运动时,心输出量可增到安静时的5~6倍,可见心脏的泵血功能是有一定的贮备的。在心动周期中,由于心脏各腔内压力、容积的变化、瓣膜的开闭等保证了血液沿一定方向流动。推动和维持血液的不断循环,保证体内的血液供应。
神经系统
神经调节
▪缩血管神经
▪舒血管神经
▪副交感舒血管神经
▪交感舒血管神经
▪背根逆向传导的舒血管作用
▪舒血管神经
▪副交感舒血管神经
▪交感舒血管神经
▪背根逆向传导的舒血管作用
内分泌系统
体液调节
▪肾上腺素和去甲肾上腺素
▪乙酰胆碱
▪垂体加压素
▪肾素和血管紧张素
▪局部性体液调节因素
▪乙酰胆碱
▪垂体加压素
▪肾素和血管紧张素
▪局部性体液调节因素
淋巴系统
辅助心血管系统
0 条评论
下一页