Java虚拟机-第12章笔记-Java内存模型与线程
2022-01-20 17:18:37 1 举报
AI智能生成
Java虚拟机-第12章笔记-Java内存模型与线程
作者其他创作
大纲/内容
12.1 概述
Amdahl定律通过系统中并行化与串行化的比重来描述多处理器系统能获得的运算加速能力,摩尔定律则用于描述处理器晶体管数量与运行效率之间的发展关系。这两个定律的更替代表了近年来硬件发展从追求处理器频率到追求多核心并行处理的发展过程。
计算机的运算速度与它的存储和通信子系统的速度差距太大,大量的时间都花费在磁盘I/O、网络通信或者数据库访问上。
衡量一个服务性能的高低好坏,每秒事务处理数(Transactions Per Second,TPS)是重要的指标之一,它代表着一秒内服务端平均能响应的请求总数,而TPS值与程序的并发能力又有非常密切的关系。
对于计算量相同的任务,程序线程并发协调得越有条不紊,效率自然就会越高;反之,线程之间频繁争用数据,互相阻塞甚至死锁,将会大大降低程序的并发能力。
12.2 硬件的效率与一致性
由于计算机的存储设备与处理器的运算速度有着几个数量级的差距,所以现代计算机系统都不得不加入一层或多层读写速度尽可能接近处理器运算速度的高速缓存(Cache)来作为内存与处理器之间的缓冲:将运算需要使用的数据复制到缓存中,让运算能快速进行,当运算结束后再从缓存同步回内存之中,这样处理器就无须等待缓慢的内存读写了。
处理器、高速缓存、主内存间的交互关系
基于高速缓存的存储交互很好地解决了处理器与内存速度之间的矛盾,但引入了一个新的问题:缓存一致性(Cache Coherence)。
在多路处理器系统中,每个处理器都有自己的高速缓存,而它们又共享同一主内存,这种系统称为共享内存多核系统。
除了增加高速缓存之外,为了使处理器内部的运算单元能尽量被充分利用,处理器可能会对输入代码进行乱序执行优化。
12.3 Java内存模型
0. 设计Java内存模型的原因
屏蔽各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。
定义程序中各种变量的访问规则,即关注在虚拟机中把变量值存储到内存和从内存中取出变量值这样的底层细节。
1. 主内存与工作内存
线程、工作内存、主内存三者的交互关系
Java内存模型规定了所有的变量都存储在主内存中(此处的主内存与介绍物理硬件时提到的主内存名字一样,两者也可以类比,但物理上它仅是虚拟机内存的一部分)。
每条线程还有自己的工作内存(可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用的变量的主内存副本,线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的数据 。
不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成。
主内存直接对应于物理硬件的内存,而为了获取更好的运行速度,虚拟机(或者是硬件、操作系统本身的优化措施)可能会让工作内存优先存储于寄存器和高速缓存中,因为程序运行时主要访问的是工作内存。
2. 内存间交互操作
Java内存模型中定义了8种操作(原子的、不可再分的)
lock(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态。
unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。
load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
use(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。
assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。
write(写入):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。
在执行上述8种基本操作时必须满足如下规则
不允许read和load、store和write操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者工作内存发起回写了但主内存不接受的情况出现。
不允许一个线程丢弃它最近的assign操作,即变量在工作内存中改变了之后必须把该变化同步回主内存。
不允许一个线程无原因地(没有发生过任何assign操作)把数据从线程的工作内存同步回主内存中。
一个新的变量只能在主内存中“诞生”,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量,换句话说就是对一个变量实施use、store操作之前,必须先执行assign和load操作。
一个变量在同一个时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。
如果对一个变量执行lock操作,那将会清空工作内存中此变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作以初始化变量的值。
如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定的变量。
对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)。
Java内存模型简化后的4种操作
read
write
lock
unlock
注意点
如果要把一个变量从主内存拷贝到工作内存,那就要按顺序执行read和load操作。
如果要把变量从工作内存同步回主内存,就要按顺序执行store和write操作。
3. 对于volatile型变量的特殊规则
当一个变量被定义成volatile之后,它将具备两项特性
第一项是保证此变量对所有线程的可见性
指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。
而普通变量并不能做到这一点,普通变量的值在线程间传递时均需要通过主内存来完成。
基于volatile变量的运算在并发下并不都是线程安全的。
线程不安全:int i = 0; i++;
线程安全:int i = 0; i = 1;
第二项是禁止指令重排序优化
普通的变量仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致。
应用:双锁检测(Double Check Lock,DCL)单例模式
双锁单例模式
new 一个对象分为3步骤(可出现指令重排)
1. memory = allocate() //分配内存
2. ctorInstanc(memory) //初始化对象
3. instance = memory //设置instance指向刚分配的地址
指令重排序是指处理器采用了允许将多条指令不按程序规定的顺序分开发送给各个相应的电路单元进行处理。
指令重排的条件:处理器必须能正确处理指令依赖情况保障程序能得出正确的执行结果。
volatile变量读操作的性能消耗与普通变量几乎没有什么差别,但是写操作则可能会慢上一些,因为它需要在本地代码中插入许多内存屏障指令来保证处理器不发生乱序执行。
在volatile与锁中选择的唯一判断依据仅仅是volatile的语义能否满足使用场景的需求。
4. 针对long和double型变量的特殊规则
对于64位的数据类型(long和double),在Java内存模型中特别定义了一条宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,这就是所谓的“long和double的非原子性协定”。
在目前主流平台下商用的64位Java虚拟机中并不会出现非原子性访问行为,但是对于32位的Java虚拟机,譬如比较常用的32位x86平台下的HotSpot虚拟机,对long类型的数据确实存在非原子性访问的风险。
在实际开发中,除非该数据有明确可知的线程竞争,否则我们在编写代码时一般不需要因为这个原因刻意把用到的long和double变量专门声明为volatile。
5. 原子性、可见性与有序性
1. 原子性
基本数据类型的访问、读写都是具备原子性的(例外就是long和double的非原子性协定)。
更大范围的原子性保证:更高层次的字节码指令monitorenter和monitorexit来隐式地实现原子性(synchronized关键字通过这两个指令实现原子性)。
2. 可见性
可见性就是指当一个线程修改了共享变量的值时,其他线程能够立即得知这个修改。
Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此。
volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。
除了volatile之外,Java还有两个关键字能实现可见性,它们是synchronized和final。
final关键字的可见性是指:被final修饰的字段在构造器中一旦被初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那么在其他线程中就能看见final字段的值。
3. 有序性
Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。
前半句是指“线程内似表现为串行的语义”。
后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。
Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性
volatile关键字本身就包含了禁止指令重排序的语义。
synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这个规则决定了持有同一个锁的两个同步块只能串行地进入。
6. 先行发生原则
先行发生是Java内存模型中定义的两项操作之间的偏序关系,比如说操作A先行发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等。
Java内存模型下一些“天然的”先行发生关系
程序次序规则:在一个线程内,按照控制流顺序,书写在前面的操作先行发生于书写在后面的操作。注意,这里说的是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。
管程锁定规则:一个unlock操作先行发生于后面对同一个锁的lock操作。这里必须强调的是“同一个锁”,而“后面”是指时间上的先后。
volatile变量规则:对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后。
线程启动规则:Thread对象的start()方法先行发生于此线程的每一个动作。
线程终止规则:线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread::join()方法是否结束、Thread::isAlive()的返回值等手段检测线程是否已经终止执行。
线程中断规则 (Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread::interrupted()方法检测到是否有中断发生。
对象终结规则:一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
传递性:如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。
时间先后顺序与先行发生原则之间基本没有因果关系,所以我们衡量并发安全问题的时候不要受时间顺序的干扰,一切必须以先行发生原则为准。
12.4 Java与线程
1. 线程的实现
线程是比进程更轻量级的调度执行单位,线程的引入,可以把一个进程的资源分配和执行调度分开,各个线程既可以共享进程资源(内存地址、文件I/O等),又可以独立调度。
目前线程是Java里面进行处理器资源调度的最基本单位,不过如果日后Loom项目能成功为Java引入纤程(Fiber)的话,可能就会改变这一点。
实现线程主要有3种方式:
1、使用内核线程实现(1:1实现)
内核线程(Kernel-Level-Thread,KLT)就是直接由操作系统内核(Kernel,下称内核)支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器(Scheduler)对线程进行调度,并负责将线程的任务映射到各个处理器上。每个内核线程可以视为内核的一个分身,这样操作系统就有能力同时处理多件事情,支持多线程的内核就称为多线程内核(Multi-Threads-Kernel)。
程序一般不会直接使用内核线程,而是使用内核线程的一种高级接口——轻量级进程(Light-Weight-Process,LWP),轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程。这种轻量级进程与内核线程之间1:1的关系称为一对一的线程模型。
轻量级进程与内核线程之间1:1的关系
轻量级进程优缺点
优点
每个轻量级进程都成为一个独立的调度单元,即使其中某一个轻量级进程在系统调用中被阻塞了,也不会影响整个进程继续工作。
缺点
首先,由于是基于内核线程实现的,所以各种线程操作,如创建、析构及同步,都需要进行系统调用。而系统调用的代价相对较高,需要在用户态(User-Mode)和内核态(Kernel-Mode)中来回切换。
其次,每个轻量级进程都需要有一个内核线程的支持,因此轻量级进程要消耗一定的内核资源(如内核线程的栈空间),因此一个系统支持轻量级进程的数量是有限的。
2、使用用户线程实现(1:N实现)
广义上定义:一个线程只要不是内核线程,都可以认为是用户线程(User-Thread,UT)的一种。
狭义上定义:用户线程指的是完全建立在用户空间的线程库上,系统内核不能感知到用户线程的存在及如何实现的。
用户线程的建立、同步、销毁和调度完全在用户态中完成,不需要内核的帮助。
如果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也能够支持规模更大的线程数量,部分高性能数据库中的多线程就是由用户线程实现的。
进程与用户线程之间1:N的关系
用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都需要由用户程序自己去处理。
使用用户线程实现的程序通常都比较复杂,除了有明确的需求外(譬如以前在不支持多线程的操作系统中的多线程程序、需要支持大规模线程数量的应用),一般的应用程序都不倾向使用用户线程。
许多新的、以高并发为卖点的编程语言又普遍支持了用户线程,譬如Golang、Erlang等。
3、使用混合方式实现(N:M实现)
将内核线程与用户线程一起使用的实现方式,被称为N:M实现。
用户线程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发。
而操作系统支持的轻量级进程则作为用户线程和内核线程之间的桥梁,这样可以使用内核提供的线程调度功能及处理器映射,并且用户线程的系统调用要通过轻量级进程来完成,这大大降低了整个进程被完全阻塞的风险。
这种混合模式中,用户线程与轻量级进程的数量比是不定的,是N:M的关系。
用户线程与轻量级进程之间M:N的关系
许多UNIX系列的操作系统,如Solaris、HP-UX等都提供了M:N的线程模型实现。在这些操作系统上的应用也相对更容易应用M:N的线程模型。
Java线程的实现
HotSpot虚拟机它的每一个Java线程都是直接映射到一个操作系统原生线程来实现的,而且中间没有额外的间接结构,所以HotSpot自己是不会去干涉线程调度的。
可以设置线程优先级给操作系统提供调度建议。
何时冻结或唤醒线程、该给线程分配多少处理器执行时间、该把线程安排给哪个处理器核心去执行等,都是由操作系统完成的,也都是由操作系统全权决定的。
操作系统支持怎样的线程模型,在很大程度上会影响上面的Java虚拟机的线程是怎样映射的,这一点在不同的平台上很难达成一致。
线程模型只对线程的并发规模和操作成本产生影响,对Java程序的编码和运行过程来说,这些差异都是完全透明的。
2. Java线程调度
线程调度是指系统为线程分配处理器使用权的过程,调度主要方式有两种,分别是协同式线程调度和抢占式线程调度。
协同式线程调度
线程的执行时间由线程本身来控制,线程把自己的工作执行完了之后,要主动通知系统切换到另外一个线程上去。
好处:实现简单,而且由于线程要把自己的事情干完后才会进行线程切换,切换操作对线程自己是可知的,所以一般没有什么线程同步的问题。
坏处:线程执行时间不可控制,甚至如果一个线程的代码编写有问题,一直不告知系统进行线程切换,那么程序就会一直阻塞在那里。
抢占式线程调度
每个线程将由系统来分配执行时间,线程的切换不由线程本身来决定。线程的执行时间是系统可控的,也不会有一个线程导致整个进程甚至整个系统阻塞的问题。
Java使用的线程调度方式就是抢占式调度。
线程优先级并不是一项稳定的调节手段,这不仅仅体现在某些操作系统上不同的优先级实际会变得相同这一点上,还有其他情况让我们不能过于依赖线程优先级:优先级可能会被系统自行改变。
3. 状态转换
Java线程的6种状态
1、新建(New):创建后尚未启动的线程处于这种状态。
2、运行(Runnable):包括操作系统线程状态中的Running和Ready,也就是处于此状态的线程有可能正在执行,也有可能正在等待着操作系统为它分配执行时间。
3、无限期等待(Waiting):处于这种状态的线程不会被分配处理器执行时间,它们要等待被其他线程显式唤醒。以下方法会让线程陷入无限期的等待状态:
没有设置Timeout参数的Object::wait()方法;
没有设置Timeout参数的Thread::join()方法;
LockSupport::park()方法。
4、限期等待(Timed-Waiting):处于这种状态的线程也不会被分配处理器执行时间,不过无须等待被其他线程显式唤醒,在一定时间之后它们会由系统自动唤醒。以下方法会让线程进入限期等待状态:
Thread::sleep()方法;
设置了Timeout参数的Object::wait()方法;
设置了Timeout参数的Thread::join()方法;
LockSupport::parkNanos()方法;
LockSupport::parkUntil()方法。
5、阻塞(Blocked):线程被阻塞了,“阻塞状态”与“等待状态”的区别是“阻塞状态”在等待着获取到一个排它锁,这个事件将在另外一个线程放弃这个锁的时候发生;而“等待状态”则是在等待一段时间,或者唤醒动作的发生。在程序等待进入同步区域的时候,线程将进入这种状态。
6、结束(Terminated):已终止线程的线程状态,线程已经结束执行。
线程状态转换关系
12.5 Java与协程
1. 内核线程的局限
1:1的内核线程模型是如今Java虚拟机线程实现的主流选择,但是这种映射到操作系统上的线程天然的缺陷是切换、调度成本高昂,系统能容纳的线程数量也很有限。
在每个请求本身的执行时间变得很短、数量变得很多的前提下,用户线程切换的开销甚至可能会接近用于计算本身的开销,这就会造成严重的浪费。
2. 协程的复苏
内核线程的调度成本主要来自于用户态与核心态之间的状态转换,而这两种状态转换的开销主要来自于响应中断、保护和恢复执行现场的成本。这种保护和恢复现场的工作,免不了涉及一系列数据在各种寄存器、缓存中的来回拷贝,当然不可能是一种轻量级的操作。
由于最初多数的用户线程是被设计成协同式调度的,所以它有了一个别名——“协程”(Coroutine)。又由于这时候的协程会完整地做调用栈的保护、恢复工作,所以今天也被称为“有栈协程”(Stackfull Coroutine),起这样的名字是为了便于跟后来的“无栈协程”(Stackless Coroutine)区分开。
协程的主要优势是轻量,无论是有栈协程还是无栈协程,都要比传统内核线程要轻量得多。
在64位Linux上HotSpot的线程栈容量默认是1MB,此外内核数据结构还会额外消耗16KB内存。与之相对的,一个协程的栈通常在几百个字节到几KB之间。
Java虚拟机里线程池容量达到两百就已经不算小了,而很多支持协程的应用中,同时并存的协程数量可数以十万计。
协程的局限:需要在应用层面实现的内容(调用栈、调度器这些)特别多。
3. Java-纤程(官方项目Loom)
纤程是一种典型的有栈协程。
Loom项目背后的意图是重新提供对用户线程的支持,但与过去的绿色线程不同,这些新功能不是为了取代当前基于操作系统的线程实现,而是会有两个并发编程模型在Java虚拟机中并存,可以在程序中同时使用。新模型有意地保持了与目前线程模型相似的API设计,它们甚至可以拥有一个共同的基类,这样现有的代码就不需要为了使用纤程而进行过多改动,甚至不需要知道背后采用了哪个并发编程模型。
在新并发模型下,一段使用纤程并发的代码会被分为两部分——执行过程(Continuation)和调度器(Scheduler)。执行过程主要用于维护执行现场,保护、恢复上下文状态,而调度器则负责编排所有要执行的代码的顺序。
将调度程序与执行过程分离的好处是,用户可以选择自行控制其中的一个或者多个。
Quasar协程库是一个不依赖Java虚拟机的独立实现的协程库。Quasar的实现原理是字节码注入,在字节码层面对当前被调用函数中的所有局部变量进行保存和恢复。
Loom项目的领导者Ron Pressler就是Quasar的作者。
如果导图对您有用,请在右上角给点个赞吧
0 条评论
下一页