Java知识梳理
2023-07-02 14:36:44 1 举报
AI智能生成
知识点梳理
作者其他创作
大纲/内容
数据库知识
数据库基础
数据库范式
第一范式(1NF):原子性(存储的数据应该具有“不可再分性”)
第二范式(2NF):唯一性 (消除非主键部分依赖联合主键中的部分字段)(一定要在第一范式已经满足的情况下)
第三范式(3NF):独立性,消除传递依赖(非主键值不依赖于另一个非主键值)
MySQL
SQL执行流程
连接器: 身份认证和权限相关(登录 MySQL 的时候)。
查询缓存: 执行查询语句的时候,会先查询缓存(MySQL 8.0 版本后移除,因为这个功能不太实用)。
分析器: 没有命中缓存的话,SQL 语句就会经过分析器,分析器说白了就是要先看你的 SQL 语句要干嘛,再检查你的 SQL 语句语法是否正确。
优化器: 按照 MySQL 认为最优的方案去执行。
执行器: 执行语句,然后从存储引擎返回数据。 执行语句之前会先判断是否有权限,如果没有权限的话,就会报错。
插件式存储引擎 : 主要负责数据的存储和读取,采用的是插件式架构,支持 InnoDB、MyISAM、Memory 等多种存储引擎。
MySQL 支持哪些存储引擎?
InnoDB
mysql默认引擎
支持事物
MyISAM
不支持事物
mysql5.5之前版本是默认引擎
MyISAM 和 InnoDB 有什么区别?
InnoDB 支持行级别的锁粒度,MyISAM 不支持,只支持表级别的锁粒度。
MyISAM 不提供事务支持。InnoDB 提供事务支持,实现了 SQL 标准定义了四个隔离级别。
MyISAM 不支持外键,而 InnoDB 支持。
MyISAM 不支持 MVCC,而 InnoDB 支持。
MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是两者的实现方式不太一样。
MyISAM 不支持数据库异常崩溃后的安全恢复,而 InnoDB 支持。
InnoDB 的性能比 MyISAM 更强大。
MyISAM 不提供事务支持。InnoDB 提供事务支持,实现了 SQL 标准定义了四个隔离级别。
MyISAM 不支持外键,而 InnoDB 支持。
MyISAM 不支持 MVCC,而 InnoDB 支持。
MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是两者的实现方式不太一样。
MyISAM 不支持数据库异常崩溃后的安全恢复,而 InnoDB 支持。
InnoDB 的性能比 MyISAM 更强大。
SQL 标准定义了哪些事务隔离级别?
READ-UNCOMMITTED(读取未提交) : 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
READ-COMMITTED(读取已提交) : 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
REPEATABLE-READ(可重复读) : 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。(mysql默认隔离级别)
SERIALIZABLE(可串行化) : 最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。
MySQL 的隔离级别是基于锁实现的吗?
MySQL 的隔离级别基于锁和 MVCC 机制共同实现的。
SERIALIZABLE 隔离级别是通过锁来实现的,READ-COMMITTED 和 REPEATABLE-READ 隔离级别是基于 MVCC 实现的。不过, SERIALIZABLE 之外的其他隔离级别可能也需要用到锁机制,就比如 REPEATABLE-READ 在当前读情况下需要使用加锁读来保证不会出现幻读。
行锁和表锁的区别?
表级锁: MySQL 中锁定粒度最大的一种锁(全局锁除外),是针对非索引字段加的锁,对当前操作的整张表加锁,实现简单,资源消耗也比较少,加锁快,不会出现死锁。不过,触发锁冲突的概率最高,高并发下效率极低。表级锁和存储引擎无关,MyISAM 和 InnoDB 引擎都支持表级锁。
行级锁: MySQL 中锁定粒度最小的一种锁,是 针对索引字段加的锁 ,只针对当前操作的行记录进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。行级锁和存储引擎有关,是在存储引擎层面实现的。
行级锁的使用有什么注意事项?
InnoDB 的行锁是针对索引字段加的锁,表级锁是针对非索引字段加的锁。当我们执行 UPDATE、DELETE 语句时,如果 WHERE条件中字段没有命中唯一索引或者索引失效的话,就会导致扫描全表对表中的所有行记录进行加锁。
MySQL索引
索引介绍
索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。
索引的优缺点
优点
使用索引可以大大加快 数据的检索速度(大大减少检索的数据量)
通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性
创建索引和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率
索引需要使用物理文件存储,也会耗费一定空间。
二叉查找树(BST)
左子树所有节点的值均小于根节点的值。
右子树所有节点的值均大于根节点的值。
左右子树也分别为二叉查找树。
当二叉查找树是平衡的时候,也就是树的每个节点的左右子树深度相差不超过 1 的时候,查询的时间复杂度为 O(log2(N)),具有比较高的效率。然而,当二叉查找树不平衡时,例如在最坏情况下(有序插入节点),树会退化成线性链表(也被称为斜树),导致查询效率急剧下降,时间复杂退化为 O(N)
AVL 树
AVL 树需要频繁地进行旋转操作来保持平衡,因此会有较大的计算开销进而降低了查询性能。并且, 在使用 AVL 树时,每个树节点仅存储一个数据,而每次进行磁盘 IO 时只能读取一个节点的数据,如果需要查询的数据分布在多个节点上,那么就需要进行多次磁盘 IO。 磁盘 IO 是一项耗时的操作,在设计数据库索引时,我们需要优先考虑如何最大限度地减少磁盘 IO 操作的次数
红黑树
红黑树是一种自平衡二叉查找树,通过在插入和删除节点时进行颜色变换和旋转操作,使得树始终保持平衡状态
红黑树的应用还是比较广泛的,TreeMap、TreeSet 以及 JDK1.8 的 HashMap 底层都用到了红黑树。对于数据在内存中的这种情况来说,红黑树的表现是非常优异的
B 树& B+树
B 树也称 B-树,全称为 多路平衡查找树 ,B+ 树是 B 树的一种变体。B 树和 B+树中的 B 是 Balanced (平衡)
B 树& B+树两者有何异同呢?
B 树的所有节点既存放键(key) 也存放数据(data),而 B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。
B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。
在 B 树中进行范围查询时,首先找到要查找的下限,然后对 B 树进行中序遍历,直到找到查找的上限;而 B+树的范围查询,只需要对链表进行遍历即可。
B+树与 B 树相比,具备更少的 IO 次数、更稳定的查询效率和更适于范围查询这些优势。
聚簇索引
聚簇索引(Clustered Index)即索引结构和数据一起存放的索引,并不是一种单独的索引类型。InnoDB 中的主键索引就属于聚簇索引。
优点:
查询速度非常快:聚簇索引的查询速度非常的快,因为整个 B+树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。相比于非聚簇索引, 聚簇索引少了一次读取数据的 IO 操作。
对排序查找和范围查找优化:聚簇索引对于主键的排序查找和范围查找速度非常快。
缺点:
依赖于有序的数据:因为 B+树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
更新代价大:如果对索引列的数据被修改时,那么对应的索引也将会被修改,而且聚簇索引的叶子节点还存放着数据,修改代价肯定是较大的,所以对于主键索引来说,主键一般都是不可被修改的。
非聚簇索引
非聚簇索引(Non-Clustered Index)即索引结构和数据分开存放的索引,并不是一种单独的索引类型。二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。
非聚簇索引的叶子节点并不一定存放数据的指针,因为二级索引的叶子节点就存放的是主键,根据主键再回表查数据
非聚簇索引的叶子节点并不一定存放数据的指针,因为二级索引的叶子节点就存放的是主键,根据主键再回表查数据
优点:
更新代价比聚簇索引要小 。非聚簇索引的更新代价就没有聚簇索引那么大了,非聚簇索引的叶子节点是不存放数据的
缺点:
依赖于有序的数据:跟聚簇索引一样,非聚簇索引也依赖于有序的数据
可能会二次查询(回表):这应该是非聚簇索引最大的缺点了。 当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。
Java基础知识
JDK和JRE区别?
JDK 是 Java Development Kit 缩写,它是功能齐全的 Java SDK。它拥有 JRE 所拥有的一切(包含了 JRE),还有编译器(javac)和工具(如 javadoc 和 jdb)。它能够创建和编译 Java 程序
JRE 是 Java 运行时环境。它是运行已编译 Java 程序所需的所有内容的集合,包括 Java 虚拟机(JVM),Java 类库,java 命令和其他的一些基础构件。但是,它不能用于创建新程序。
成员变量与局部变量的区别?
成员变量是属于类的,而局部变量是在代码块或方法中定义的变量或是方法的参数;成员变量可以被 public,private,static 等修饰符所修饰,而局部变量不能被访问控制修饰符及 static 所修饰;但是,成员变量和局部变量都能被 final 所修饰
从变量在内存中的存储方式来看,如果成员变量是使用 static 修饰的,那么这个成员变量是属于类的,如果没有使用 static 修饰,这个成员变量是属于实例的。而对象存在于堆内存,局部变量则存在于栈内存
静态变量有什么作用?
静态变量可以被类的所有实例共享。无论一个类创建了多少个对象,它们都共享同一份静态变量。
通常情况下,静态变量会被 final 关键字修饰成为常量。
通常情况下,静态变量会被 final 关键字修饰成为常量。
有哪些基本数据类型?
byte 对应1个字节,对应位数为8,默认值0,取值范围(-128 ~ 127)
short 对应2个字节,对应位数为16,默认值0,取值范围(-32768 ~ 32767)
int 对应4个字节,对应位数为32,默认值0,取值范围(-2147483648 ~ 2147483647)
long 对应8个字节,对应位数为64,默认值0L,取值范围(-9223372036854775808 ~ 9223372036854775807)
char 对应2个字节,对应位数为16,默认值'u0000',取值范围(0 ~ 65535)
float 对应4个字节,对应位数为32,默认值0f,取值范围(1.4E-45 ~ 3.4028235E38)
double 对应8个字节,对应位数为64,默认值0d,取值范围(4.9E-324 ~ 1.7976931348623157E308)
boolean 不存在字节,对应位数为1,默认值false,取值范围(true、false)
基本类型和包装类型的区别?
成员变量包装类型不赋值就是 null ,而基本类型有默认值且不是 null。
包装类型可用于泛型,而基本类型不可以。
基本数据类型的局部变量存放在 Java 虚拟机栈中的局部变量表中,基本数据类型的成员变量(未被 static 修饰 )存放在 Java 虚拟机的堆中。包装类型属于对象类型,我们知道几乎所有对象实例都存在于堆中。
相比于对象类型, 基本数据类型占用的空间非常小。
Java中深拷贝和浅拷贝区别
浅拷贝:浅拷贝会在堆上创建一个新的对象(区别于引用拷贝的一点),不过,如果原对象内部的属性是引用类型的话,浅拷贝会直接复制内部对象的引用地址,也就是说拷贝对象和原对象共用同一个内部对象。
深拷贝 :深拷贝会完全复制整个对象,包括这个对象所包含的内部对象。
字符串拼接用“+” 还是 StringBuilder?
字符串对象通过“+”的字符串拼接方式,实际上是通过 StringBuilder 调用 append() 方法实现的,拼接完成之后调用 toString() 得到一个 String 对象
在循环内使用“+”进行字符串的拼接的话,存在比较明显的缺陷:编译器不会创建单个 StringBuilder 以复用,会导致创建过多的 StringBuilder 对象
(直接使用StringBuilder可以解决大量生成String对象问题)
(直接使用StringBuilder可以解决大量生成String对象问题)
用 “+” 进行字符串拼接会产生大量的临时对象的问题在 JDK9 中得到了解决。在 JDK9 当中,字符串相加 “+” 改为了用动态方法 makeConcatWithConstants() 来实现,而不是大量的 StringBuilder 了。这个改进是 JDK9 的 JEP 280 提出的,这也意味着 JDK 9 之后,你可以放心使用“+” 进行字符串拼接了
Exception 和 Error 有什么区别?
所有的异常都有一个共同的祖先 java.lang 包中的 Throwable 类,但是Throwable 类有两个重要的子类
Exception :程序本身可以处理的异常,可以通过 catch 来进行捕获。Exception 又可以分为 Checked Exception (受检查异常,必须处理) 和 Unchecked Exception (不受检查异常,可以不处理)。
Error :Error 属于程序无法处理的错误 ,我们没办法通过 catch 来进行捕获不建议通过catch捕获 。例如 Java 虚拟机运行错误(Virtual MachineError)、虚拟机内存不够错误(OutOfMemoryError)、类定义错误(NoClassDefFoundError)等 。这些异常发生时,Java 虚拟机(JVM)一般会选择线程终止。
常见序列化协议有哪些?
JDK 自带的序列化方式一般不会用 ,因为序列化效率低并且存在安全问题。比较常用的序列化协议有 Hessian、Kryo、Protobuf、ProtoStuff,这些都是基于二进制的序列化协议。
Java集合
List, Set, Queue, Map 四者的区别?
Set(注重独一无二的性质): 存储的元素是无序的、不可重复的。
List(对付顺序的好帮手): 存储的元素是有序的、可重复的。
Queue(实现排队功能的叫号机): 按特定的排队规则来确定先后顺序,存储的元素是有序的、可重复的。
Map(用 key 来搜索的专家): 使用键值对(key-value)存储,类似于数学上的函数 y=f(x),"x" 代表 key,"y" 代表 value,key 是无序的、不可重复的,value 是无序的、可重复的,每个键最多映射到一个值。
List
ArrayList: Object[] 数组
线程不安全
初始化容量10
Vector:Object[] 数组
线程安全
LinkedList: 双向链表(JDK1.6 之前为循环链表,JDK1.7 取消了循环)
Set
HashSet(无序,唯一): 基于 HashMap 实现的,底层采用 HashMap 来保存元素
LinkedHashSet: LinkedHashSet 是 HashSet 的子类,并且其内部是通过 LinkedHashMap 来实现的。有点类似于我们之前说的 LinkedHashMap 其内部是基于 HashMap 实现一样,不过还是有一点点区别的
TreeSet(有序,唯一): 红黑树(自平衡的排序二叉树)
Map
HashMap 和 Hashtable 的区别
线程是否安全: HashMap 是非线程安全的,Hashtable 是线程安全的,因为 Hashtable 内部的方法基本都经过synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap );效率: 因为线程安全的问题,HashMap 要比 Hashtable 效率高一点。
对 Null key 和 Null value 的支持: HashMap 可以存储 null 的 key 和 value,但 null 作为键只能有一个,null 作为值可以有多个;Hashtable 不允许有 null 键和 null 值,否则会抛出 NullPointerException
初始容量大小和每次扩充容量大小的不同: ① 创建时如果不指定容量初始值,Hashtable 默认的初始大小为 11,之后每次扩充,容量变为原来的 2n+1。HashMap 默认的初始化大小为 16。之后每次扩充,容量变为原来的 2 倍。② 创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为 2 的幂次方大小(HashMap 中的tableSizeFor()方法保证,下面给出了源代码)。也就是说 HashMap 总是使用 2 的幂作为哈希表的大小,后面会介绍到为什么是 2 的幂次方
底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)时,将链表转化为红黑树(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树),以减少搜索时间。Hashtable 没有这样的机制。
HashMap 和 HashSet 区别
HashMap实现了 Map 接口
HashSet实现 Set 接口
HashMap存储键值对
HashSet仅存储对象
HashMap调用 put()向 map 中添加元素
HashSet调用 add()方法向 Set 中添加元素
HashMap 使用键(Key)计算 hashcode
HashSet 使用成员对象来计算 hashcode 值,对于两个对象来说 hashcode 可能相同,所以equals()方法用来判断对象的相等性
HashMap 和 TreeMap 区别
TreeMap 和HashMap 都继承自AbstractMap ,但是需要注意的是TreeMap它还实现了NavigableMap接口和SortedMap 接口。
实现 NavigableMap 接口让 TreeMap 有了对集合内元素的搜索的能力
实现SortedMap接口让 TreeMap 有了对集合中的元素根据键排序的能力。默认是按 key 的升序排序(也可以自定义)
ConcurrentHashMap 和 Hashtable 的区别
层数据结构: JDK1.7 的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟 HashMap1.8 的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的。
实现线程安全的方式(重要):在 JDK1.7 的时候,ConcurrentHashMap 对整个桶数组进行了分割分段(Segment,分段锁),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。到了 JDK1.8 的时候,ConcurrentHashMap 已经摒弃了 Segment 的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6 以后 synchronized 锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在 JDK1.8 中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。
JDK 1.7 和 JDK 1.8 的 ConcurrentHashMap 实现有什么不同?
线程安全实现方式:JDK 1.7 采用 Segment 分段锁来保证安全, Segment 是继承自 ReentrantLock。JDK1.8 放弃了 Segment 分段锁的设计,采用 Node + CAS + synchronized 保证线程安全,锁粒度更细,synchronized 只锁定当前链表或红黑二叉树的首节点。
Hash 碰撞解决方法 : JDK 1.7 采用拉链法,JDK1.8 采用拉链法结合红黑树(链表长度超过一定阈值时(8),将链表转换为红黑树)。
并发度:JDK 1.7 最大并发度是 Segment 的个数,默认是 16。JDK 1.8 最大并发度是 Node 数组的大小,并发度更大。
并发与多线程
程序计数器为什么是私有的?
字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了
程序计数器私有主要是为了线程切换后能恢复到正确的执行位置
虚拟机栈和本地方法栈为什么是私有的?
虚拟机栈: 每个 Java 方法在执行的同时会创建一个栈帧用于存储局部变量表、操作数栈、常量池引用等信息。从方法调用直至执行完成的过程,就对应着一个栈帧在 Java 虚拟机栈中入栈和出栈的过程。
本地方法栈: 和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。
保证线程中的局部变量不被别的线程访问到,虚拟机栈和本地方法栈是线程私有的。
堆和方法区为什么是共享的?
堆和方法区是所有线程共享的资源,其中堆是进程中最大的一块内存,主要用于存放新创建的对象 (几乎所有对象都在这里分配内存),方法区主要用于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
线程的生命周期和状态?
NEW: 初始状态,线程被创建出来但没有被调用 start() 。
RUNNABLE: 运行状态,线程被调用了 start()等待运行的状态。
BLOCKED :阻塞状态,需要等待锁释放。
WAITING:等待状态,表示该线程需要等待其他线程做出一些特定动作(通知或中断)。
TIME_WAITING:超时等待状态,可以在指定的时间后自行返回而不是像 WAITING 那样一直等待。
TERMINATED:终止状态,表示该线程已经运行完毕。
什么是线程死锁?
多个线程同时被阻塞,它们其中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。
如何避免死锁?
破坏请求与保持条件 :一次性申请所有的资源。
破坏不剥夺条件 :占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。
破坏循环等待条件 :靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。破坏循环等待条件。
sleep() 方法和 wait() 方法区别?
sleep() 方法没有释放锁,而 wait() 方法释放了锁 。
wait() 通常被用于线程间交互/通信,sleep()通常被用于暂停执行。
wait() 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 notify()或者 notifyAll() 方法。sleep()方法执行完成后,线程会自动苏醒,或者也可以使用 wait(long timeout) 超时后线程会自动苏醒。
sleep() 是 Thread 类的静态本地方法,wait() 则是 Object 类的本地方法。为什么这样设计呢?
volatile作用性是什么?
volatile 关键字可以保证变量的可见性,如果我们将变量声明为 volatile ,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取,但不能保证数据的原子性(利用 synchronized、Lock或者AtomicXX原子类)
volatile 关键字除了可以保证变量的可见性,还有一个重要的作用就是防止 JVM 的指令重排序。 如果我们将变量声明为 volatile ,在对这个变量进行读写操作的时候,会通过插入特定的 内存屏障 的方式来禁止指令重排序。
什么是悲观锁?
悲观锁总是假设最坏的情况,认为共享资源每次被访问的时候就会出现问题(比如共享数据被修改),所以每次在获取资源操作的时候都会上锁,这样其他线程想拿到这个资源就会阻塞直到锁被上一个持有者释放。也就是说,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程。
synchronized和ReentrantLock等独占锁就是悲观锁思想的实现
造成影响:高并发的场景下,激烈的锁竞争会造成线程阻塞,大量阻塞线程会导致系统的上下文切换,增加系统的性能开销。并且,悲观锁还可能会存在死锁问题,影响代码的正常运行。
悲观锁通常多用于写比较多的情况下(多写场景,竞争激烈),这样可以避免频繁失败和重试影响性能,悲观锁的开销是固定的。不过,如果乐观锁解决了频繁失败和重试这个问题的话(比如LongAdder),也是可以考虑使用乐观锁的,要视实际情况而定。
什么是乐观锁?
乐观锁总是假设最好的情况,认为共享资源每次被访问的时候不会出现问题,线程可以不停地执行,无需加锁也无需等待,只是在提交修改的时候去验证对应的资源(也就是数据)是否被其它线程修改了(具体方法可以使用版本号机制或 CAS 算法)。
在 Java 中java.util.concurrent.atomic包下面的原子变量类(比如AtomicInteger、LongAdder)就是使用了乐观锁的一种实现方式 CAS 实现的。
造成影响:高并发的场景下,乐观锁相比悲观锁来说,不存在锁竞争造成线程阻塞,也不会有死锁的问题,在性能上往往会更胜一筹。但是,如果冲突频繁发生(写占比非常多的情况),会频繁失败和重试,这样同样会非常影响性能,导致 CPU 飙升。
乐观锁通常多于写比较少的情况下(多读场景,竞争较少),这样可以避免频繁加锁影响性能。不过,乐观锁主要针对的对象是单个共享变量(参考java.util.concurrent.atomic包下面的原子变量类)
LongAdder使用场景:高并发下的全局计数器。 LongAdder优势:能减少CAS重试次数、能防止伪共享、惰性求值;缺点:使用sum统计时如果有并发更新,可能导致统计的数据有误差。
什么是CAS算法?
CAS 的全称是 Compare And Swap(比较与交换) ,用于实现乐观锁,被广泛应用于各大框架中。CAS 的思想很简单,就是用一个预期值和要更新的变量值进行比较,两值相等才会进行更新。
CAS 是一个原子操作,底层依赖于一条 CPU 的原子指令。
原子操作 即最小不可拆分的操作,也就是说操作一旦开始,就不能被打断,直到操作完成。
原子操作 即最小不可拆分的操作,也就是说操作一旦开始,就不能被打断,直到操作完成。
CAS 涉及到三个操作数:
V:要更新的变量值(Var)
E:预期值(Expected)
N:拟写入的新值(New)
什么是ABA 问题?
如果一个变量 V 初次读取的时候是 A 值,并且在准备赋值的时候检查到它仍然是 A 值,那我们就能说明它的值没有被其他线程修改过了吗?很明显是不能的,因为在这段时间它的值可能被改为其他值,然后又改回 A,那 CAS 操作就会误认为它从来没有被修改过。这个问题被称为 CAS 操作的 "ABA"问题。
ABA 问题的解决思路是在变量前面追加上版本号或者时间戳。JDK 1.5 以后的 AtomicStampedReference 类就是用来解决 ABA 问题的,其中的 compareAndSet() 方法就是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。
synchronized 是什么?
synchronized 是 Java 中的一个关键字,翻译成中文是同步的意思,主要解决的是多个线程之间访问资源的同步性,可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。
可以保证原子性,可见性
synchronized 关键字加到 static 静态方法和 synchronized(class) 代码块上都是是给 Class 类上锁。
synchronized 关键字加到实例方法上是给对象实例上锁。
synchronized 关键字加到实例方法上是给对象实例上锁。
JDK1.6 之后的 synchronized 底层做了哪些优化?
JDK1.6 对锁的实现引入了大量的优化,如偏向锁、轻量级锁、自旋锁、适应性自旋锁、锁消除、锁粗化等技术来减少锁操作的开销。
锁主要存在四种状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。
DK 提供的所有现成的 Lock 实现类,包括 synchronized 关键字锁都是可重入的
synchronized 和 volatile 有什么区别?
volatile 关键字是线程同步的轻量级实现,所以 volatile性能肯定比synchronized关键字要好 。但是 volatile 关键字只能用于变量而 synchronized 关键字可以修饰方法以及代码块 。
volatile 关键字能保证数据的可见性,但不能保证数据的原子性。synchronized 关键字两者都能保证。
volatile关键字主要用于解决变量在多个线程之间的可见性,而 synchronized 关键字解决的是多个线程之间访问资源的同步性。
可中断锁和不可中断锁有什么区别?
可中断锁:获取锁的过程中可以被中断,不需要一直等到获取锁之后 才能进行其他逻辑处理。ReentrantLock 就属于是可中断锁。
不可中断锁:一旦线程申请了锁,就只能等到拿到锁以后才能进行其他的逻辑处理。 synchronized 就属于是不可中断锁。
ThreadLocal 内存泄露问题是怎么导致的?
ThreadLocalMap 中使用的 key 为 ThreadLocal 的弱引用,而 value 是强引用。所以,如果 ThreadLocal 没有被外部强引用的情况下,在垃圾回收的时候,key 会被清理掉,而 value 不会被清理掉。
为什么要用线程池?
降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
线程池常见参数有哪些?
corePoolSize : 任务队列未达到队列容量时,最大可以同时运行的线程数量。
maximumPoolSize : 任务队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
keepAliveTime:线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁。
unit : keepAliveTime 参数的时间单位。
workQueue: 新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
threadFactory :executor 创建新线程的时候会用到。
handler :饱和策略。
ThreadPoolExecutor.AbortPolicy: 抛出 RejectedExecutionException来拒绝新任务的处理
ThreadPoolExecutor.CallerRunsPolicy: 调用执行自己的线程运行任务,也就是直接在调用execute方法的线程中运行(run)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。
ThreadPoolExecutor.DiscardPolicy: 不处理新任务,直接丢弃掉。
ThreadPoolExecutor.DiscardOldestPolicy: 此策略将丢弃最早的未处理的任务请求。
线程池处理任务的流程
如果当前运行的线程数小于核心线程数,那么就会新建一个线程来执行任务。
如果当前运行的线程数等于或大于核心线程数,但是小于最大线程数,那么就把该任务放入到任务队列里等待执行。
如果向任务队列投放任务失败(任务队列已经满了),但是当前运行的线程数是小于最大线程数的,就新建一个线程来执行任务。
如果当前运行的线程数已经等同于最大线程数了,新建线程将会使当前运行的线程超出最大线程数,那么当前任务会被拒绝,饱和策略会调用RejectedExecutionHandler.rejectedExecution()方法。
如何设定线程池的大小?
CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1。比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。
线程数更严谨的计算的方法应该是:最佳线程数 = N(CPU 核心数)∗(1+WT(线程等待时间)/ST(线程计算时间)),其中 WT(线程等待时间)=线程运行总时间 - ST(线程计算时间)。线程等待时间所占比例越高,需要越多线程。线程计算时间所占比例越高,需要越少线程。我们可以通过 JDK 自带的工具 VisualVM 来查看 WT/ST 比例。CPU 密集型任务的 WT/ST 接近或者等于 0,因此, 线程数可以设置为 N(CPU 核心数)∗(1+0)= N,和我们上面说的 N(CPU 核心数)+1 差不多。IO 密集型任务下,几乎全是线程等待时间,从理论上来说,你就可以将线程数设置为 2N(按道理来说,WT/ST 的结果应该比较大,这里选择 2N 的原因应该是为了避免创建过多线程吧)。
AQS 的原理是什么?
AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁 实现的,即将暂时获取不到锁的线程加入到队列中。
CLH(Craig,Landin,and Hagersten) 队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。在 CLH 同步队列中,一个节点表示一个线程,它保存着线程的引用(thread)、 当前节点在队列中的状态(waitStatus)、前驱节点(prev)、后继节点(next)。
Semaphore 的原理是什么?
Semaphore 是共享锁的一种实现,它默认构造 AQS 的 state 值为 permits,你可以将 permits 的值理解为许可证的数量,只有拿到许可证的线程才能执行。
调用semaphore.acquire() ,线程尝试获取许可证,如果 state >= 0 的话,则表示可以获取成功。如果获取成功的话,使用 CAS 操作去修改 state 的值 state=state-1。如果 state<0 的话,则表示许可证数量不足。此时会创建一个 Node 节点加入阻塞队列,挂起当前线程。
Semaphore 通常用于那些资源有明确访问数量限制的场景比如限流(仅限于单机模式,实际项目中推荐使用 Redis +Lua 来做限流)
CountDownLatch 的原理是什么?
CountDownLatch 是共享锁的一种实现,它默认构造 AQS 的 state 值为 count。当线程使用 countDown() 方法时,其实使用了tryReleaseShared方法以 CAS 的操作来减少 state,直至 state 为 0 。当调用 await() 方法的时候,如果 state 不为 0,那就证明任务还没有执行完毕,await() 方法就会一直阻塞,也就是说 await() 方法之后的语句不会被执行。然后,CountDownLatch 会自旋 CAS 判断 state == 0,如果 state == 0 的话,就会释放所有等待的线程,await() 方法之后的语句得到执行。
CountDownLatch 的作用就是 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。
场景:读取处理 6 个文件,这 6 个任务都是没有执行顺序依赖的任务,但是我们需要返回给用户的时候将这几个文件的处理的结果进行统计整理
场景:读取处理 6 个文件,这 6 个任务都是没有执行顺序依赖的任务,但是我们需要返回给用户的时候将这几个文件的处理的结果进行统计整理
CyclicBarrier 有什么用?
CyclicBarrier 内部通过一个 count 变量作为计数器,count 的初始值为 parties 属性的初始化值,每当一个线程到了栅栏这里了,那么就将计数器减 1。如果 count 值为 0 了,表示这是这一代最后一个线程到达栅栏,就尝试执行我们构造方法中输入的任务。
线程池原理分析
如果当前运行的线程数小于核心线程数,那么就会新建一个线程来执行任务。
如果当前运行的线程数等于或大于核心线程数,但是小于最大线程数,那么就把该任务放入到任务队列里等待执行。
如果向任务队列投放任务失败(任务队列已经满了),但是当前运行的线程数是小于最大线程数的,就新建一个线程来执行任务。
如果当前运行的线程数已经等同于最大线程数了,新建线程将会使当前运行的线程超出最大线程数,那么当前任务会被拒绝,饱和策略会调用RejectedExecutionHandler.rejectedExecution()方法。
Java 线程池最佳实践
线程池必须手动通过 ThreadPoolExecutor 的构造函数来声明,避免使用Executors 类创建线程池,会有 OOM 风险
通过一些手段来检测线程池的运行状态比如 SpringBoot 中的 Actuator 组件。
建议不同类别的业务用不同的线程池
初始化线程池的时候需要显示命名(设置线程池名称前缀),有利于定位问题。
正确配置线程池参数:
CPU 密集型任务(N+1)
I/O 密集型任务(2N)
CPU 密集型任务(N+1)
I/O 密集型任务(2N)
当线程池不再需要使用时,应该显式地关闭线程池,释放线程资源。
shutdown() :关闭线程池,线程池的状态变为 SHUTDOWN。线程池不再接受新任务了,但是队列里的任务得执行完毕。
shutdownNow() :关闭线程池,线程池的状态变为 STOP。线程池会终止当前正在运行的任务,停止处理排队的任务并返回正在等待执行的 List。
用完 shutdownNow 和 shuwdown 方法后,并不代表线程池已经完成关闭操作,它只是异步的通知线程池进行关闭处理。如果要同步等待线程池彻底关闭后才继续往下执行,需要调用awaitTermination方法进行同步等待。
线程池尽量不要放耗时任务
在使用线程池时,我们应该尽量避免将耗时任务提交到线程池中执行。对于一些比较耗时的操作,如网络请求、文件读写等,可以采用异步操作的方式来处理,以避免阻塞线程池中的线程。
使用线程池的一些坑
重复创建线程池的坑
Spring 内部线程池的坑
使用 Spring 内部线程池时,一定要手动自定义线程池,配置合理的参数,不然会出现生产问题(一个请求创建一个线程)
线程池和 ThreadLocal 共用的坑
JVM虚拟机知识
线程私有区域
程序计数器
程序计数器是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器。字节码解释器工作时通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等功能都需要依赖这个计数器来完成。
程序计数器是唯一一个不会出现 OutOfMemoryError 的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。
本地方法栈
虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。本地方法被执行的时候,在本地方法栈也会创建一个栈帧,用于存放该本地方法的局部变量表、操作数栈、动态链接、出口信息。
Java虚拟机栈
与程序计数器一样,Java 虚拟机栈(后文简称栈)也是线程私有的,它的生命周期和线程相同,随着线程的创建而创建,随着线程的死亡而死亡
栈由一个个栈帧组成,而每个栈帧中都拥有:局部变量表、操作数栈、动态链接、方法返回地址。和数据结构上的栈类似,两者都是先进后出的数据结构,只支持出栈和入栈两种操作。
局部变量表 主要存放了编译期可知的各种数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference 类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)
操作数栈 主要作为方法调用的中转站使用,用于存放方法执行过程中产生的中间计算结果。另外,计算过程中产生的临时变量也会放在操作数栈中
动态链接 主要服务一个方法需要调用其他方法的场景。Class 文件的常量池里保存有大量的符号引用比如方法引用的符号引用。当一个方法要调用其他方法,需要将常量池中指向方法的符号引用转化为其在内存地址中的直接引用。动态链接的作用就是为了将符号引用转换为调用方法的直接引用,这个过程也被称为 动态连接
线程共享区域
堆
Java 堆是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存
Java 堆是垃圾收集器管理的主要区域,因此也被称作 GC 堆(Garbage Collected Heap)。从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代;再细致一点有:Eden、Survivor、Old 等空间。进一步划分的目的是更好地回收内存,或者更快地分配内存。
方法区
方法区会存储已被虚拟机加载的 类信息、字段信息、方法信息、常量、静态变量、即时编译器编译后的代码缓存等数据。
对象的创建
Step1:类加载检查
当 JVM 执行到 字节码 new 指令时,首先会到 常量池 中定位到类的符号引用,通过符号引用检查 Demo 类是否已被加载。
如果类没有被被加载,就必须先执行加载过程。行相应的类加载过程。
如果类没有被被加载,就必须先执行加载过程。行相应的类加载过程。
Step2:分配内存
在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式有 “指针碰撞” 和 “空闲列表” 两种,选择哪种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。
内存分配的两种方式
指针碰撞:
适用场合:堆内存规整(即没有内存碎片)的情况下。
原理:用过的内存全部整合到一边,没有用过的内存放在另一边,中间有一个分界指针,只需要向着没用过的内存方向将该指针移动对象内存大小位置即可。使用该分配方式的 GC 收集器:Serial, ParNew
原理:用过的内存全部整合到一边,没有用过的内存放在另一边,中间有一个分界指针,只需要向着没用过的内存方向将该指针移动对象内存大小位置即可。使用该分配方式的 GC 收集器:Serial, ParNew
空闲列表:
适用场合:堆内存不规整的情况下。
原理:虚拟机会维护一个列表,该列表中会记录哪些内存块是可用的,在分配的时候,找一块儿足够大的内存块儿来划分给对象实例,最后更新列表记录。
使用该分配方式的 GC 收集器:CMS
原理:虚拟机会维护一个列表,该列表中会记录哪些内存块是可用的,在分配的时候,找一块儿足够大的内存块儿来划分给对象实例,最后更新列表记录。
使用该分配方式的 GC 收集器:CMS
Step3:初始化零值
内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。
Step4:设置对象头
初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。
Step5:执行 init 方法
在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始,<init> 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行 <init> 方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。
HotSpot VM 的实现,它里面的 GC 其实准确分类只有两大种
部分收集 (Partial GC):
新生代收集(Minor GC / Young GC):只对新生代进行垃圾收集;
老年代收集(Major GC / Old GC):只对老年代进行垃圾收集。需要注意的是 Major GC 在有的语境中也用于指代整堆收集;
混合收集(Mixed GC):对整个新生代和部分老年代进行垃圾收集。
新生代收集(Minor GC / Young GC):只对新生代进行垃圾收集;
老年代收集(Major GC / Old GC):只对老年代进行垃圾收集。需要注意的是 Major GC 在有的语境中也用于指代整堆收集;
混合收集(Mixed GC):对整个新生代和部分老年代进行垃圾收集。
整堆收集 (Full GC):
收集整个 Java 堆和方法区。
收集整个 Java 堆和方法区。
死亡对象判断方法
引用计数器
优点:(效率高,实现简单)
给对象中添加一个引用计数器:
每当有一个地方引用它,计数器就加 1;
当引用失效,计数器就减 1;
任何时候计数器为 0 的对象就是不可能再被使用的。
给对象中添加一个引用计数器:
每当有一个地方引用它,计数器就加 1;
当引用失效,计数器就减 1;
任何时候计数器为 0 的对象就是不可能再被使用的。
缺点:很难解决对象之间循环引用的问题
可达性分析算法
这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的,需要被回收
即使在可达性分析法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑阶段”,要真正宣告一个对象死亡,至少要经历两次标记过程;可达性分析法中不可达的对象被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行 finalize 方法。当对象没有覆盖 finalize 方法,或 finalize 方法已经被虚拟机调用过时,虚拟机将这两种情况视为没有必要执行。被判定为需要执行的对象将会被放在一个队列中进行第二次标记,除非这个对象与引用链上的任何一个对象建立关联,否则就会被真的回收。
引用类型总结
强引用
以前我们使用的大部分引用实际上都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空间不足,Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。
弱引用
如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。
软引用
如果一个对象只具有软引用,那就类似于可有可无的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。
虚引用
"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。
垃圾收集算法
标记清除
标记-清除(Mark-and-Sweep)算法分为“标记(Mark)”和“清除(Sweep)”阶段:首先标记出所有不需要回收的对象,在标记完成后统一回收掉所有没有被标记的对象。
效率问题:标记和清除两个过程效率都不高。
空间问题:标记清除后会产生大量不连续的内存碎片。
空间问题:标记清除后会产生大量不连续的内存碎片。
复制算法
为了解决标记-清除算法的效率和内存碎片问题,复制(Copying)收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。
可用内存变小:可用内存缩小为原来的一半。
不适合老年代:如果存活对象数量比较大,复制性能会变得很差。
不适合老年代:如果存活对象数量比较大,复制性能会变得很差。
在新生代中,每次收集都会有大量对象死去,所以可以选择”标记-复制“算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集
标记-整理算法
标记-整理(Mark-and-Compact)算法是根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。
由于多了整理这一步,因此效率也不高,适合老年代这种垃圾回收频率不是很高的场景。
而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集
分代收集算法
当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将 Java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
垃圾收集器
Serial (串行)收集器
-XX:+UseSerialGC
-XX:+UseSerialOldGC
-XX:+UseSerialGC
-XX:+UseSerialOldGC
Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( "Stop The World" ),直到它收集结束。
Serial 收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在 JDK1.5 以及以前的版本中与 Parallel Scavenge 收集器搭配使用,另一种用途是作为 CMS 收集器的后备方案。
新生代采用标记-复制算法,老年代采用标记-整理算法。
Parallel(并行)收集器
-XX:+UseParallelGC
-XX:+UseParallelOldGC
-XX:+UseParallelGC
-XX:+UseParallelOldGC
使用多线程进行GC,会充分利用CPU资源,但是依然会有STW,这是JDK8默认使用的新生代和老年代垃圾收集器,由于充分利用CPU资源,吞吐量也高
新生代采用标记-复制算法,老年代采用标记-整理算法。
ParNew 收集器
-XX:+UseParNewGC
-XX:+UseParNewGC
工作原理和Parallel收集器一样,都是使用多线程GC,但是区别在于ParNew收集器可以和CMS收集器配合工作。主流方案:
ParNew收集器负责收集新生代。CMS负责收集老年代。
ParNew收集器负责收集新生代。CMS负责收集老年代。
新生代采用标记-复制算法,老年代采用标记-整理算法。
CMS 收集器
-XX:UseConcMarkSweepGC
-XX:UseConcMarkSweepGC
尽量减少STW等待时间,提升用户体验。真正做到GC线程和用户线程几乎同时工作。CMS收集器采用标记-清除算法
GC收集过程
初始化标记
暂停所有的线程(STW),并记录GC Roots(可达性分析)直接能引用的对象
并发标记
从GC Roots(可达性分析)的直接关联的对象开始遍历整个对象图的过程,这个过程耗时长,但是不需要STW,可以直接和垃圾收集线程一起并发运行,这个过程中,用户线程和垃圾收集线程是并发的,但是可能会导致已经标记的过的对象发生变化产生新的对象没有被标记。
重新标记
为了修正在并发标记过程中因为用户线程继续运行而导致标记产生变动那一部分对象标记记录,这个阶段的停顿时间(STW)会比初始化标记的(STW)时间要稍长,但是远远比并发标记阶段的时间短。主要用到三色标记算法做重新标记
并发清理
开启用户线程,同时和GC线程开启堆未标记的区域做清理,这个阶段如果有新增对象会被标记为黑色不做任何处理。
并发重置
重置本次GC过程标记的数据。
三色标记算法
在并发标记阶段,对象的状态可能发生变化,GC在进行GC Roots(可达性分析)算法分析对象时,用三色来标记对象的状态。
黑色(并发标记 & 并发清理)
这个对象及其所引用都已被GC Roots(可达性分析)遍历,黑色标记的对象不会被回收。
灰色(重新标记)
这个对象被GC Roots(可达性分析)遍历过但其部分的引用没有被GC Roots遍历。在重新标记阶段会被重新遍历灰色对象。
白色
这个对象没有被GC Roots遍历过,在重新标记的时该对象如果还是白色的话,那么将会回收。
G1 收集器
G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征.
并行与并发:G1 能充分利用 CPU、多核环境下的硬件优势,使用多个 CPU(CPU 或者 CPU 核心)来缩短 Stop-The-World 停顿时间。部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 java 程序继续执行。
分代收集:虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但是还是保留了分代的概念。
空间整合:与 CMS 的“标记-清除”算法不同,G1 从整体来看是基于“标记-整理”算法实现的收集器;从局部上来看是基于“标记-复制”算法实现的。
可预测的停顿:这是 G1 相对于 CMS 的另一个大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内,消耗在垃圾收集上的时间不得超过 N 毫秒。
GC收集过程
初始化标记
并发标记
最终标记
筛选回收
ZGC 收集器
与 CMS 中的 ParNew 和 G1 类似,ZGC 也采用标记-复制算法,不过 ZGC 对该算法做了重大改进。
在 ZGC 中出现 Stop The World 的情况会更少!
在 ZGC 中出现 Stop The World 的情况会更少!
Java11 的时候 ,ZGC 还在试验阶段。经过多个版本的迭代,不断的完善和修复问题,ZGC 在 Java 15 已经可以正式使用了!
0 条评论
下一页
为你推荐
查看更多