高数-下
2024-11-28 14:22:31 0 举报
AI智能生成
是数学领域的一门学科,主要研究微积分、微分方程、无穷级数等高级数学概念。这门课程的核心内容包括极限理论、连续与可微分函数、不定积分与定积分等。通过深入研究这些内容,学生可以掌握解决复杂数学问题的能力,为未来在工程、科学、经济和金融等领域的应用打下坚实基础。
作者其他创作
大纲/内容
向量代数与空间解析几何
向量代数
概念
向量:既有大小,也有方向,不考虑起点的一类量。记作 ,
向量相等表示向量的大小相等且方向相同,即经过平行移动后能完全重合的向量是相等的
模:向量的大小叫做向量的模。记作 ||, ||
单位向量:模等于1的向量
零向量:模等于0的向量
零向量与另一向量的夹角可取0到 π 任意值
零向量与任意向量平行
零向量与任意向量垂直
夹角:不超过 π 的 ∠AOB 称为向量a和b的夹角。记作
= 0 即 //
= π/2 即 ⊥
共线,共面
共线:当两个平行向量的起点放在同一点时,它们的终点与公共起点在一条直线上,因此,两向量平行也称两向量共线
共面:设有k(k≧3)个向量,当把他们的起点放在同一点时,如果k个终点和公共起点在一个平面上,就称这k个向量共面
设数 , , 不全为0,使 + + = 0,则向量 ,, 共面,特别是在 = = = 1 的情况下
空间坐标系
右手法则
卦限
第一卦限:x>0, y>0, z>0
第五卦限:x>0, y>0, z<0
第二卦限:x<0, y>0, z>0
第六卦限:x<0, y>0, z<0
第三卦限:x<0, y<0, z>0
第七卦限:x<0, y<0, z<0
第四卦限:x>0, y<0, z>0
第八卦限:x>0, y<0, z<0
点M 向径 r = = xi + yj + zk (x, y, z)
向量模:设 = (x, y, z) ,则 | | =
方向角:非零向量 与三条坐标轴的夹角 称为向量 的方向角
方向余弦:(, , ) = ( x / ||, y / ||, z / || ) = (x, y, z) / || = / || = , + + = 1
运算
向量加法
线性运算,结果是向量,记作: +
结果向量的大小和方向由三角形法则 / 平行四边形法则确定
符合交换律: + = +
符合结合律:( + ) + = + ( + )
坐标计算: + = (+, +, +)
| + | ≦ || + ||
向量减法
负向量:与 的模相等且方向相反的向量,记作:-
- = + (-)
- :箭头指向被减数
- =
= + = - += -
坐标计算: - = (- , - , - )
| - | ≦ || + ||
向量数乘
线性运算,结果是向量,记作:λ
模:|λ| = |λ|·||,方向:λ>0方向与 相同,λ<0方向与 相反
1 = , (-1) = -
λ=0时,λ是零向量
符合交换律:λ· = ·λ
符合结合律:λ(μ) = μ(λ) = (μλ)
符合分配律:(λ+μ) = λ + μ
符合分配律:λ( + ) = λ + λ
坐标计算:λ = (λ, λ, λ)
定理:设向量 0,则向量 平行于 的充分必要条件是:存在唯一的实数 λ,使 = λ ,也即 (, , ) = λ (, , )
点P 向量 = xi 实数 x
投影
结果是数量,记作: 或
= | | , 是 和 u 轴的夹角
= +
= λ
向量数量积,点乘
结果是数量,记作 ·
· = || || = || = ||
· = 0 ⊥
= · / || || = ( + + ) / ( )
· =
· = || · || //
· = 0 ⊥
符合交换律: · = ·
符合结合律:(λ) · = · (λ) = λ( · )
不符合结合律:( · ) · <> · ( · ) ,结果是两个向量,不一定相等
符合分配律:( + ) · = · + ·
坐标计算: · = + +
= · / || || = ( + + ) / ( )
向量积,叉乘
结果是向量,记作
模:| | = || || ,方向: ⊥ && ⊥ && 满足右手法则
= //
几何意义:叉乘的模是以 , 为边的平行四边形面积
=
= //
| | = || · || ⊥
伪交换律: = -
符合结合律:(λ) = (λ) = λ( )
不符合结合律:( ) = ( ),结果是两个向量,模和方向都可能不同,故不一定相等
符合分配律:( + ) = +
坐标计算: =
混合积
结果是数量,记作 [ ] = ( ) ·
几何意义:以 , , 为棱的平面六面体体积
[ ] = ( ) · = 0 , , 三向量共面
坐标计算:( ) · =
( ) · = ( ) · = ( ) ·
几种乘法的运算顺序:先数乘,再叉乘,最后点乘
空间解析几何
平面及其方程
平面的法线向量:如果一非零向量垂直于一平面,该向量称为该平面的法线向量
平面的点法式方程
过空间一点可以作且只能作一平面垂直于一已知直线
设: = (A, B, C),
= (, , ),M = (x, y, z),因: ⊥ ,故: · = 0,故:A(x-) + B(y-) + C(z-) = 0
= (, , ),M = (x, y, z),因: ⊥ ,故: · = 0,故:A(x-) + B(y-) + C(z-) = 0
平面的一般方程
Ax + By + Cz + D = 0
= (A,B,C)是该平面的一个法线向量
D=0:该平面过原点
A=0:法线垂直x轴,该平面平行或包含x轴,B=0:法线垂直于y轴,该平面平行或包含y轴,C=0:法线垂直于z轴,该平面平行或包含z轴
A=0&B=0:法线垂直于x,y轴,该平面平行或重合XOY,A=0&C=0:法线垂直于x,z轴,该平面平行或重合XOZ,B=0&C=0:法线垂直于y,z轴,该平面平行或重合YOZ
两平面夹角
定义:两平面的法线向量的夹角(通常指锐角或直角)
= | · | / || || = ( | + + | ) / ( )
两平面平行或重合 两法线向量平行: / = / = /
两平面垂直 两法线向量垂直 · = 0 + + = 0
空间直线及其方程
直线的方向向量:如果一非零向量平行于一已知直线,该向量称为该直线的方向向量
方向向量 = (m,n,p) 的m,n,p坐标称为该直线的一组方向数, 的方向余弦称为该直线的方向余弦
空间直线的点向式方程(或称对称式方程)
过空间一点可以作且只能作一条直线平行于一已知直线
设: = (m, n, p), = (, , ),M = (x, y, z),因: // ,故:(x-) / m = (y-) / n = (z-) / p = t
空间直线的参数方程
x = + mt
y = + nt
z = + pt
从空间直线的一般方程如何推出空间直线的参数方程?
1:计算一般方程里两个平面的法线向量 ,
2:计算空间直线的方向向量 =
3:选取一个点,得到该点坐标
4:计算空间直线的点向式方程及参数方程
从空间直线的点向式方程或参数方程可得到无数个一般方程,不唯一
空间直线的一般方程
x + y + z + = 0
x + y + z + = 0
两直线夹角
定义:两直线的方向向量的夹角(通常指锐角或直角)
= | · | / || || = ( | + + | ) / ( )
两直线平行或重合 两方向向量平行: / = / = /
两直线垂直 两方向向量垂直 · = 0 + + = 0
直线与平面夹角
定义:当直线与平面不垂直时,直线和它在平面上的投影直线的夹角 (0 ≦ ≦ π/2)
直线与平面的夹角 和 直线方向向量与平面法线向量的夹角 互补
= | · | / || || = ( | + + | ) / ( )
直线与平面平行或重合 方向向量与法线向量垂直 · = 0 + + = 0
直线与平面垂直 方向向量与法线向量平行 / = / = /
通过直线的平面束方程
直线L的定义
1:x + y + z + = 0
2:x + y + z + = 0
通过直线L的平面束方程
x + y + z + + λ·(x + y + z + ) = 0
该平面束方程含除方程2定义的平面外的所有过直线L的平面
其他
直线中点
设:点
= (, , ),点 = (, , ),则 的中点 M = ( (+)/2, (+)/2, (+)/2 )
= (, , ),点 = (, , ),则 的中点 M = ( (+)/2, (+)/2, (+)/2 )
曲面及其方程
三元方程 F(x,y,z) = 0 称为曲面S的方程,曲面S称为三元方程的图形
曲面研究的基本问题
1:已知点的几何轨迹,建立曲面方程。
设曲面上任意一点坐标(x,y,z)
找出等量关系建立方程
2:已知曲面方程,研究方程对应的图形
截痕法
伸缩变形法
球面
=
等量关系:球心到球面任一点距离 = R
旋转曲面
以一条平面曲线(母线)绕其平面上的一条直线(轴)旋转一周所成的曲面
设平面曲线(母线)方程:f(y, z) = 0,轴(z轴)旋转,绕其他轴旋转类似
等量关系:曲线上点(0, y, z) 绕z轴旋转任一角度后坐标:(, , z),这两个点到z轴的距离相等,即: = =
建立方程:f(±, z) = 0
圆锥面:直线绕一相交直线旋转一周
旋转单叶双曲面,旋转双叶双曲面:双曲线绕坐标轴旋转一周
旋转曲面的参数方程
假设:空间曲线T(含一个参数的参数方程)绕z轴旋转一周所得的旋转曲面
x = Φ(t)
y = ψ(t)
z = ω(t)
a ≦ t ≦ b
旋转曲面方程(含两个参数的参数方程)
x = ·
y = ·
z = ω(t)
a ≦ t ≦ b
0 ≦ ≦ 2π
柱面
直线L(母线)沿定曲线C(准线)平行移动形成的轨迹
等量关系:定曲线C的方程
F(x,y) = 0表示母线平行于z轴的柱面,F(x,z)表示母线平行于y轴的柱面,F(y,z)表示母线平行于x轴的柱面
圆柱面:准线是圆
抛物线柱面:准线是抛物线
平面:准线是直线
二次曲面
三元二次方程 F(x,y,z) = 0 表示的曲面
截痕法研究曲面形状
z = 0 时形状 (或x,y)
z = t 时的形状 (或x,y)
综合截痕的变化了解曲面形状
伸缩变形法研究曲面形状
圆到椭圆,球到椭球的变形
先让 , , 的系数相等,这样就是球,再在某个方向上伸缩,也就是系数做相应变化,得到椭球
有凑数的技巧在里面
空间曲线及其方程
空间曲线的一般方程
F(x, y, z) = 0
G(x, y, z) = 0
空间曲线的参数方程
x = x(t)
y = y(t)
z = z(t)
螺旋线
参数方程
x = a·
y = a·
z = b·
特点
当 从 变成 + ,z 由 b 变成 b + b ,即上升的高度与转过的角度成正比
螺距:当转过2π时上升的高度2πb
空间曲线在坐标面上的投影
定义:以曲线C为准线,母线平行于z轴的柱面叫做曲线C关于XOY面的投影柱面,投影柱面与XOY的交线叫做曲线C在XOY面上的投影曲线
设曲线C的方程如下
1: F(x,y,z) = 0
2: G(x,y,z) = 0
从方程1,2消去 z 得到 H(x, y) = 0 即为投影柱面方程
联立投影柱面方程和 z=0 方程组即为投影曲线方程组
H(x, y) = 0
z = 0
在其他坐标面的投影类似
多元函数微分法及其应用
基础概念
坐标平面
建立了直角坐标系的平面
点
点P与有序二元实数组(x,y)一一对应
距离
邻域
的 邻域
(, ) = { | || < }
( , ) = { | 0 < | | < }
平面点集
坐标平面上具有某种性质P的点的集合
E = { (x,y) | (x,y) 具有性质P }
点和点集的关系
内点
点的某个邻域属于点集
外点
点的某个邻域与点集交集为空
边界点
点的任一邻域有属于点集的点,也有不属于点集的点
边界:边界点的全体,记为
聚点
点的任一去心邻域总有属于点集的点
内点 + 除孤立点外的边界点
重要的平面点集
开集
点集的点都是内点
闭集
点集的边界属于点集
连通集
点集内的任意两点都可用折线连结,且折线上的点都属于点集
开区域(区域)
连通的开集
闭区域
连通的闭集
有界集
点集 (, )
无界集
非有界集
子主题
子主题
子主题
n 维空间:定义了线性运算的 集合
集合
设 n 为取定的一个正整数, 表示 n 元有序实数组 (, , ..., ) 的全体所构成的集合
= ... = { (, , ..., ) | , i=1, 2, ..., n }
零元 : 中的坐标原点或 n 维零向量
线性运算
设 = (, , ..., ), = (, , ..., ),
+ = (+, +, ..., +)
= (, , ..., )
两点间距离,
=
邻域
= { | , < }
元素 与零元 0 之间的距离
= =
= =
极限
0 , , ...,
多元函数
定义
设是的一个非空子集,称映射为定义在上的二元函数,通常记为 或,点集称为该函数的定义域,称为自变量,称为因变量,函数值的全体所构成的集合称为函数的值域,记为
多元函数的极限/连续性
极限
定义
设二元函数 的定义域为,是的聚点,如果存在常数,对于任意给定的正数,总存在正数,使得当点时,都有 成立,那么就称常数为函数当时的极限,记作 或
二重极限存在,是指点以任何方式趋于点时,都无限接近于
二元函数的极限:二重极限
连续性
定义
设二元函数的定义域为,为的聚点,且,如果 ,那么称函数在点处连续
间断点
多元初等函数
指可用一个式子表示的多元函数,这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的
有界性及最大最小值定理
在有界闭区域D上的多元连续函数,必定在D上有界,且能取得最大最小值
介值定理
一致连续性定理
偏导数
定义
设函数 在点的某一邻域内有定义,当固定在而在处有增量时,相应的函数有增量,如果 存在,那么称此极限为函数 在点处对的偏导数,记作 ,,,,,
=
=
导数记号可以看作因变量微分和自变量微分之商,但偏导数的记号是一个整体记号,不能看作分子分母之商
偏导数的几何意义
对于一元函数来说,在某点具有导数,函数在该点必然连续。但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。因为不能保证按任何方式趋于该点时极限都存在。
高阶偏导数
,高阶偏导数
,混合偏导数
,混合偏导数
,高阶偏导数
如果函数 的两个二阶混合偏导数 及 在区域内连续,那么在该区域内这两个二阶混合偏导数必相等
全微分
偏增量
全增量
定义
全微分的条件
必要条件
全微分存在 偏导数存在
充分条件
偏导数存在 + 各偏导数连续 全微分存在
一元时,可微分当且仅当可导;但二元时,可微分可得两个偏导数存在,但是两个偏导数存在得不到一定可微分.
全微分的叠加原理
二元函数 :
三元函数 :
一些条件的判断
f(x,y)在点(x,y)可微分是f(x,y)在该点连续的充分条件,非必要条件
可微分 连续
可微分 连续
f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的必要条件,非充分条件
偏导数存在 可微分
偏导数存在 可微分
多元复合函数求导
一元函数与多元函数复合
设 , 可导, 有连续偏导数
全导数:
设 , , 可导, 有连续偏导数
全导数:
多元函数与多元函数复合
设 , 可导, 有连续偏导数
偏导数:
偏导数:
设 , , 可导, 有连续偏导数
偏导数:
偏导数:
其他情形
设 , 可导, 有连续偏导数
偏导数:
偏导数:
其他情形
设 可导, 有连续偏导数
偏导数:
偏导数:
注意:是 而不是 ,注意其区别
表示 里是变量,都是常量的偏导数 ,函数的第一个参数也是常量
表示 里是变量, 是常量的偏导数,也即函数的第一个参数并不是常量,这就是和 的区别
全微分形式的不变性
设 , 可导, 有连续偏导数
偏导数:
把 , 代入,可得偏导数:
隐函数的求导公式
隐函数存在定理1
设函数在点的某一邻域内具有连续偏导数,且,,则方程在点的某一邻域内恒能唯一确定一个连续且具有连续导数的函数,它满足条件,并有
,设为自变量,为因变量,两边对求导得:,得
,设 为自变量, 为因变量,两边对 求导得: ,得
隐函数存在定理2
设函数在点的某一邻域内具有连续偏导数,且,,则方程在点的某一邻域内恒能唯一确定一个连续且具有连续偏导数的二元函数,它满足条件,并有 ,
,设 为自变量, 为因变量,且, 两边对 求导得: ,得 ,两边对求导得:,得
,设 为自变量, 为因变量,且,两边对 求导得: ,得 ,两边对求导得:,得
隐函数存在定理3
设,在点的某一邻域内具有对各个变量的连续偏导数,又,,且偏导数所组成的函数行列式(或称雅可比(Jacobi)式) = = 在点不等于零,则方程组 在点的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数,它们满足条件,并有
,设 为自变量, 为因变量,且, 两边对 求导得: 得 , ,两边对求导得:,得 ,
中 两个是自变量,两个是因变量,随便选取,不一定就一定是自变量
多元函数微分学的几何应用
一元向量值函数
定义
设数集,则称映射 为一元向量值函数,通常记为 ,其中数集称为函数的定义域,称为自变量,称为因变量
极限定义
设向量值函数在点的某一去心邻域内有定义,如果存在一个常向量,对于任意给定的正数,总存在正数,使得当满足 时,对应的函数值都满足不等式 ,那么常向量就叫做向量值函数当时的极限,记作
向量值函数当时的极限存在的充分必要条件是:的三个分量函数,,当时的极限都存在,且
连续定义
设向量值函数在点的某一邻域内有定义,如果 ,则称向量值函数在连续
向量值函数在连续的充分必要条件是:的三个分量函数,,在连续
导数(导向量)定义
设向量值函数在点的某一邻域内有定义,如果 存在,那么就称这个极限向量为向量值函数在处的导数或导向量,记作 或
向量值函数在可导的充分必要条件是:的三个分量函数,,都在可导,且
向量值函数的导数运算规则
,是常数
,是常数,是向量值函数
,是向量值函数
,其中是数量函数,向量值函数数乘
,是向量值函数,向量值函数点乘
,是向量值函数,向量值函数叉乘
,是向量值函数,\psi是数量函数,复合函数求导
导向量的几何意义
导向量是向量值函数的终端曲线在点处的一个切向量,其方向与的增长方向一致
空间曲线的切线和法平面
设空间曲线 = , ,三个函数在可导,且不同时为零,点是曲线上任意一点
曲线记为向量值函数形式,
在点M处的切向量即为导向量,
在点M处的切线方程,
在点M处的法平面方程,
如果
改写成 ,求出切向量继续
如果
改写成 ,, 是由原方程组确定的显函数,求出切向量继续
曲面的切平面和法线
设曲面方程 ,设 是曲面上的任意一曲线,设是曲线上的任意一点()
则 ,两边对 求导得
则 向量 与曲线的切向量垂直,向量是曲面在点处的法向量
曲面的法向量
曲面的切平面方程
曲面的法线方程
如果曲面方程
改写为
法向量
法向量的方向余弦 , ,
切平面方程
法线方程
方向导数与梯度
方向导数
定义
设函数在点的某个邻域内有定义,点为上的另一点(是的方向余弦),且。如果函数增量与到的距离的比值,当沿着趋于(即)时的极限存在,那么称此极限为函数在点沿方向的方向导数,记作,即
与偏导数的区别
偏导数是,方向导数是
偏导数存在,方向导数必然存在,但方向导数存在,偏导数不一定存在
举例: 在处的偏导数不存在,方向导数存在(都等于1)
偏导数存在是方向导数存在的充分条件,非必要条件
定理
如果函数在点可微分,那么函数在该点沿任一方向的方向导数存在,且有 ,其中 , 是方向的方向余弦
扩展到三元函数
梯度
定义
,其中 ,
设函数在平面区域内具有一阶连续偏导数,则对于每一点,都可以定义一个向量 ,这个向量称为函数在点的梯度,记作或,即,其中 称为(二维的)向量微分算子或Nabla算子,
与方向的单位向量的关系
1:,即 与同向,函数增加最快, 最大,
2:,即 与反向,函数减少最快, 最小,
3:,即 与垂直,函数不变,
与单位法向量的关系
函数在点处的法向量,单位法向量
扩展到三元函数
称为(三维的)向量微分算子或Nabla算子,
极值与最值
无条件极值:除自变量在定义域内,无其他额外条件
定义
设函数的定义域为,为的内点,若存在的某个邻域,使得对于该邻域内异于的任何点,都有,则称函数在点有极大值,点称为函数的极大值点,若对于该邻域内异于的任何点,都有,则称函数在点有极小值,点称为函数的极小值点。极大值与极小值统称为极值,使得函数取得极值的点称为极值点。
求法
必要条件:设函数在点具有偏导数,且在点处有极值,则有,
驻点:凡是能使, 同时成立的点称为函数的驻点
具有偏导数的函数的极值点必定是驻点,但函数的驻点不一定是极值点
充分条件:设函数在点的某个邻域内连续且有一阶及二阶连续偏导数,又, ,令 , , ,则在处是否取得极值的条件如下:1)时具有极值,且当时有极大值,当时有极小值;2)时没有极值;3)时可能有极值,也可能没有极值,还需另作讨论;
求函数的极值步骤
1:解方程组 ,求得一切实数解,即可求得一切驻点
2:对于每一个驻点,求得二阶偏导数
3:定出的符号,按上述定理的结论判定是不是极值,是极大值还是极小值
4:考虑偏导数不存在的点处的极值情况
求函数的最值
假定:函数在上连续,在内可微分且只有有限个驻点
一般做法:将函数在内的所有驻点处的函数值及在的边界上的最大值和最小值相互比较,其中最大的就是最大值,最小的就是最小值。
通常做法:在通常遇到的实际问题中,如果根据问题的性质,知道函数的最大值/最小值一定在的内部取得,而函数在内只有一个驻点,那么可以肯定该驻点处的函数值就是函数在上的最大值/最小值。
条件极值:对自变量有附加条件的极值
拉格朗日乘数法
推导过程
函数,求满足条件的条件极值
假设在处取得极值,首先
再假设隐函数确定显函数,代入得 ,因为在处取得极值,故,,又因为 ,代入得
令 ,得 ,
联立得方程组 ,求解得出的就是在条件下的可能极值点
步骤
函数,求满足条件, 的条件极值
作拉格朗日函数
求解方程组
二元函数的泰勒公式
设在点的某一邻域内连续且有阶连续偏导数,为此邻域内任一点,则有
证明过程
二元函数的拉格朗日中值公式:当 n=0 时,
0 条评论
下一页